
RJ10377 (A0604-015) April 10, 2006
Computer Science

IBM Research Report

Investigating Early-Stage Design of User Interfaces for
Cross-Device Web Applications

James Lin
IBM Research Division

Almaden Research Center
650 Harry Road

San Jose, CA 95120-6099

James A. Landay
DUB Center

Computer Science and Engineering
University of Washington

Seattle, WA 98195

Lawrence Bergman, Guruduth Banavar, Danny Soroker, Richard J. Cardone
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

 .

Investigating Early-Stage Design of User Interfaces for
Cross-Device Web Applications

James Lin 1* 2, James A. Landay , Lawrence D. Bergman 3 3, Guruduth Banavar ,
Danny Soroker 3, Richard J. Cardone 3

1 2 3 IBM Almaden Research Center DUB Center IBM T.J. Watson Research

Center USER Group Computer Science and
Engineering 650 Harry Rd 19 Skyline Drive

San Jose, CA 95120, USA University of Washington Hawthorne, NY 10532, USA
jameslin@us.ibm.com Seattle, WA 98195, USA {bergmanl, banavar, soroker,

richcar}@us.ibm.com landay@cs.washington.edu

ABSTRACT
Designers increasingly need to create web applications that
can run on multiple types of devices, such as desktop PCs,
handhelds, and mobile phones. However, the ability of
designers to explore design ideas is hampered by the lack
of tools for early-stage design of user interfaces for cross-
device web applications. To understand how designers
currently handle such design tasks and discover what
features a tool should have to support and enhance the
design process, we interviewed cross-device UI designers,
and we prototyped and evaluated an early-stage, cross-
device UI design tool. We found that such a tool should
make it easier to maintain consistency across devices; allow
designers to use, capture, and reuse design patterns; give
designers more control over the retargeting process; and
show how UI elements across devices are related.
ACM Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and
Techniques – User Interfaces, H.5.2 [Interaction
Interfaces and Presentation]: User Interfaces –
Prototyping
General Terms
Design, Human Factors
Keywords
cross-device user interfaces, multi-channel user interfaces,
mobile computing
INTRODUCTION
Designers of web applications face a computing world that
is becoming increasingly complex. Users are more
frequently augmenting traditional desktop computer usage
with mobile devices such as handheld computers and
mobile phones. This allows users to access web
applications in many more locations and situations than
they can with a PC, but it also increases the burden on user
interface designers. Designers cannot simply deploy a
desktop user interface on different types of devices; they
must tailor the user interface to match the characteristics of

each individual device, such as a smaller screen or a phone
keypad.
Currently, designers either create a user interface for each
device from scratch, which is time consuming, or they rely
on programs that take an existing user interface for one
device and automatically generate versions for other
devices at run time, which usually produces undesirable
results. For example, Google’s HTML-to-WML proxy splits
Travelocity’s home page into 12 pages, each requiring
scrolling.
We believe that a hybrid approach is the most useful: a tool
that allows designers to design a user interface for one
device, and then generates UI designs for other devices. We
call this retargeting. The tool would then allow the
designer to modify the generated UIs to create the finished
device-specific interfaces. The main advantage of this
approach is that designers can quickly design high-quality
web applications for multiple devices.
We want to determine how useful such a tool would be to
designers, especially in the early stages of design when
ideas are most fluid. Will the designers find these generated
user interfaces useful or will the generated artifacts just get
in the way? How will the generated user interfaces be used?
What characteristics should the generation process have to
make such a tool useful?
To explore these questions, we took a two-pronged
approach. By interviewing designers in their workplaces,
we obtained an overall understanding of the cross-device UI
design process. We also received detailed feedback about
what a cross-device UI design tool should have, by building
and evaluating a prototype of such a tool. These findings
are informed our design of Damask, an early-stage cross-
device UI tool.
The rest of the paper is organized as follows. First, we
describe our study of current practices and implications for
cross-device design tools. Next, we describe our tool
prototype, called HopiSketch, and how designers use it. We
also describe our evaluation of HopiSketch and the
feedback we received from designers. Then, we discuss the

* This work was done while James Lin was a graduate student in the
Group for User Interface Research, Electrical Engineering and Computer
Sciences Department at the University of California, Berkeley.

Responsibilities of the Designers

implications of these results on design tools for cross-
device UIs. We also discuss how we addressed our findings
in Damask, a tool for such UI design activities. Finally, we
discuss related work and conclude.

Table 1. Interview participants. All of the designers were responsible for overall
information and interaction design, and some also handled
graphic design. None of them were developers. Seven of
the designers did detailed UI design work. The others,
Designers A2 and A9, guided the people doing the detailed
design work and made sure they followed good usability
principles and adhered to the companies’ mobile UI style
guides.

Hi
-e

nd
 p

ho
ne

W

AP
 p

ho
ne

Po

ck
et

 P
C

De
sk

to
p

Pa
lm

Designer Type of company
A1

STUDY OF CURRENT PRACTICES
We interviewed nine UI designers across eight companies
who worked on cross-device web UI projects, seven men
and two women. We interviewed six of the designers in
their offices, two over the phone, and one by e-mail. All of
these projects targeted desktop PCs and mobile phones, and
all but one also targeted PDAs. Table 1 lists the type of
companies for which our participants worked and the
devices for which they designed.
We focused our questions on how the designers addressed
the issue of handling multiple devices. We wanted to know
whether their companies grouped designers by device (e.g.,
PDA vs. phone designers) or by application (e.g., e-mail vs.
calendar). We asked how they maintained consistency
across designs, whether the desktop and mobile versions
were developed at the same time, whether the same team
worked on both versions, and if not, whether the two teams
discussed their designs with each other. We also asked
them whether they observed recurring interaction design
patterns [21] in their designs and whether they documented
them.
Finally, we discussed our ideas for a cross-device UI design
tool and asked them for their reactions and to speculate on
how useful such a tool would be. While it is hard for
someone to predict how they would use a tool, the
questions were designed to learn more about the designers’
concerns for such a tool, not to learn about specific features.
We will discuss our findings along the following themes:
responsibilities of the designers; scope of cross-device
projects; organization of project teams; managing UI
consistency; tools and documentation, and patterns; and the
need for real-time change across devices.

Scope of Cross-Device Projects
For most of the cross-device projects, the mobile UI offered
a subset of the desktop UI’s functionality. For Designers A5
and A6, mobile access and desktop access were thought of
as two aspects of their projects as a whole; neither was
considered a subset or superset of the other. Designer A9’s
projects were focused on phone interaction; the desktop
was used mostly for managing aspects of the mobile
experience, like storing pictures that the user took with the
phone’s digital camera.
Organization of Project Teams
At all but one of the companies, there were at most three
people in charge of the UI design for a project. At the UI
design firm, a project typically had two to six designers.
For six of the designers, the cross-device projects were
targeted at multiple devices from the beginning. The
designers worked on both the desktop and mobile versions
at the same time.
Designers A1, A2, and A4 only worked on the mobile UIs.
These applications were originally written for the desktop
and were later ported to mobile devices. These designers
did not consult the desktop UI designers or their design
documents; they simply looked at the desktop UI directly.
When asked how the tool should support multiple designers,
the designers did not suggest any elaborate features.
Designer A9 said that he never saw other designers actually
use collaboration features in other tools and stressed that
the overall learning curve of a new tool has to be low for a
designer to consider using it.
We were particularly interested in finding out how a team
of designers typically split up responsibility for designing a
cross-device UI project. There are several possibilities:
• Device added later: A UI for a device is designed long

after the UI for another device is done
• Group by feature: One designer designs a large part of

the UI for all devices, at the same time other designers
work on other parts of the UI

• Group by device: One designer designs the UI for only
one device, at the same time other designers work on
other devices

The process makes a big impact on the design of a cross-
device design tool. For example, Process 3 is not a good fit
for a tool that takes a UI designed by a designer, and

Web portal
A2 Enterprise software
A3 Mobile access to corporate

data

A4 Corporate portal
A5 UI design firm A6
A7 Startup incubator
A8 Mobile phone carrier
A9 Mobile phone carrier

presents a generated UI for another device to that same
designer.
We found that Processes 1 and 2 were the most common.
Only Designer A2 said that they followed Process 3, which
was a mistake, because he and his colleagues had trouble
maintaining consistency among the various device-specific
UIs. For example, one application would say “e-mail” and
another would say “message.” Consequently, they switched
to Process 2 for their next revision.
Managing UI Consistency Across Devices
All of the designers said that maintaining consistency
across devices was a major issue. While the interaction
obviously cannot be the same across all devices, the
designers said that parts of the UI should be, such as menu
order, terminology, colors and graphics. Designer A2 said
that it was easier to keep device-specific UIs consistent if
designers grouped themselves by application rather than
device, as mentioned above.
The most common way that the designers achieved
consistency was simply to check their designs manually to
make sure they were being consistent, which was tedious.
They did not have any specialized tools for this purpose.
Designers A5 and A6 typically created an information
architecture diagram first, then designed the user interface
off of that. Making sure their UI designs were consistent
with the information architecture typically kept the designs
consistent with each other.
Tools, Documentation, and Patterns
The tools that the designers used were similar to those used
by other web and interaction designers. The most
commonly mentioned tool was Microsoft Visio, which was
used not only for conceptual diagramming, but also for
laying out mobile phone UIs. Other tools included paper,
whiteboards, Adobe Illustrator, and Microsoft FrontPage.
None of the designers used computer tools specialized for
handling multiple devices.
Three companies (A1, A2, and A9) developed style guides
for mobile UIs. Since Designer A2’s company also makes
software development tools, the company’s long-term goal
is to incorporate the style guide standards directly into a
development tool for mobile UIs.
Designer A2 and his co-workers also tried to tackle the
cross-device UI design problem by developing their own
cross-device application flow language. However, they
found it hard to design a language that could encompass
both high-level application flow and device-specific
interaction. They eventually abandoned the project due to
lack of time and manpower.
All of the designers said they observed recurring interaction
design patterns in their work. However, only Designers A2
and A9 actually documented their patterns, incorporating
them into their companies’ mobile UI style guides. The
others did not document their patterns because they did not

have enough time or did not think they were useful enough
to document.
When we told the designers about our idea of making
design patterns a cornerstone of a cross-device design tool,
all but one of the designers were enthusiastic; Designer A8
was not sure whether designers would be able to recognize
patterns in their work often enough to be useful. The
designers also thought that enabling designers to create
their own patterns and add them to the tool’s pattern library
was very important, and many thought it was crucial.
Need for Synchronized Changes Across Devices
The designers’ reactions varied on whether it was important
to see the mobile phone UI change while they edited the
desktop UI, and vice versa. Four of the designers did not
think it was important; they were concerned that the
transformation process simply would not be good enough
to warrant real-time change. Two designers would like to
have the option. The others did not know.
Implications for Cross-Device UI Design Tools
Presenting retargeting results. All of the designers
designed the user interface for a particular feature across
multiple devices. Therefore, a tool that takes a designer’s UI
for one device and presents that designer with UIs for other
devices fits within current design practices.
Support for multiple designers. According to our
interviewees, explicit support for multiple designers in a
tool is not a high priority, since detailed design work for a
particular feature is usually done by one designer.
Maintaining consistency of content across devices.
Consistency was identified as a major burden of cross-
device designers. The challenge is to keep the appropriate
content consistent across devices, while letting the layout
and navigation flow between screens change to fit the
target device.
Support for design patterns. Using design patterns as the
foundation of a cross-device UI design tool is a sound idea,
but allowing designers to create their own patterns is
essential for the long-term usefulness of this feature.
HOPISKETCH: A PROTOTYPE OF A CROSS-DEVICE
DESIGN TOOL
While our interviews allowed us to discover general aspects
of the design process that we needed to support, we wanted
to get more detailed feedback about how an early-stage
cross-device design tool should behave and what features it
should have. It is hard for people to speculate about what
such a tool should be like without interacting with one.
Since there are no early-stage cross-design tools, we
quickly designed and evaluated a prototype of one, called
HopiSketch. It was built using DENIM [10] for the user
interface and Hopi [2] for the retargeting process. Due to
time constraints, this was done before the interviews in the
previous section were completed; consequently, we were
not able to incorporate all of the findings of those
interviews into HopiSketch.

User Interface

We decided to use a sketch-based interface for the user
interface of HopiSketch because designers usually sketch
on paper during the early stages of design [14]. The user
interface is based on DENIM, an existing sketch-based tool
for early-stage web design.
DENIM has one window (see Figure 1) with three main areas.
The center area is a canvas where the designer creates web
pages, sketches the contents of those pages, and draws
arrows between pages to demonstrate the behavior of
hyperlinks (Figure 2). On the left is a slider that is used to
set the current zoom level. The bottom area is a toolbox
that holds tools for drawing, panning, erasing, and creating
and inserting reusable components.
Designers test the interaction of their designs in Run mode.
Opening a pie menu over a page and selecting File→Run
launches a separate browser window with the page loaded.
The designer can navigate through the site design exactly
like in a web browser, clicking on hyperlinks and using the
Back and Forward buttons.
We augmented DENIM to allow designers to insert radio
buttons, check boxes, buttons, and drop-down boxes, which
are commonly used in web applications, directly into their
designs (see Figure 3a).
In addition, we added the ability for designers to group
elements together to indicate that the elements are related.
For example, a designer can group a text box and a Search
button together to show that they should be treated as one
unit (see Figure 3b). Groups also affect the behavior of any
radio buttons: Within a group, only one radio button may
be selected at a time.

HopiSketch focused on design for PCs and for Palm
handheld devices. To retarget a PC design to the Palm, the
designer presses a Retarget button. HopiSketch takes the
design, resizes the pages to fit the Palm’s screen, and if
needed, splits pages to minimize scrolling on the Palm.
Elements within a retargeted page, such as handwriting and
sketched images, are not resized or otherwise altered.
Figure 4 shows a design for the PC and the results of
retargeting the design to a Palm handheld.
Architecture
Figure 5 shows the overall architecture of HopiSketch.
When designers press the Retarget button, the system takes
the design file and feeds it to a de-sketcher, which
translates (or de-sketches) it into a generic model [7]. The
model is based on XHTML [22] for general content elements
and XForms [23] for form elements such as radio buttons

Figure 2. a) Left A page with the label “Home” b) Right An

arrow, whose source is a blue hyperlink, “Business.”

Figure 1. DENIM showing a typical design.

Figure 3. a) Top: Web form widgets within a page.

b) Bottom: Two groups within a page.

Figure 4. Left: A UI design for the PC. Right: The design retargeted for the Palm handheld.

and check boxes. One XHTML+XForms page in the model
represents one page in the original DENIM file.
The model is then fed through Hopi, a system for designing
cross-device web applications based on a generic model.
The model first goes to Hopi’s retargeter, which
transforms it into a markup language for a target device.
This process can result in one XHTML+XForms page being
split up into several pages, depending on the characteristics
of the target device. The retargeter creates pages that fit
within a target device’s screen, or are a little longer,
allowing a bit of scrolling. The retargeter tries to keep
elements that have been grouped together on the same page,
although this is not always possible.
The resulting markup pages are then fed into Hopi’s
renderer/geometry extractor, which renders the markup
using the predefined characteristics of the target device and
determines the positions of elements in the markup.
Finally, a re-sketcher takes the markup, the extracted
geometry, and handwritten elements from the original

DENIM file, and creates a sketch-based version of the
markup to be presented to the designer.
EVALUATION OF HOPISKETCH
To evaluate HopiSketch, we performed an informal task-
based usability test. The participants were introduced to
HopiSketch and then asked to create elements of a simple
e-commerce site.
Participants
Six designers participated in the usability study, four men
and two women. All six designers were employed at user
interface design or information architecture firms, had
experience designing for the desktop web, and had at least
some experience designing for mobile devices. Four of the
designers have worked on cross-device user interfaces,
although such interfaces are not the focus of their current
work. Table 2 summarizes the characteristics of the
participants.

Hopi
Renderer/
geometry
extractor

Device
profile

DENIM

Resketcher

2nd device-
specific
markup

Hopi
Retargeter

DENIM
file

1st device
Desketcher

Location
info

DENIM
file

2nd device

Generic
app

model

DENIM Hopi

Hopi
Renderer/
geometry
extractor

Device
profile

DENIM

Resketcher

2nd device-
specific
markup

Hopi
Retargeter

DENIM
file

1st device
Desketcher

Location
info

DENIM
file

2nd device

Generic
app

model

DENIM Hopi

Figure 5. The architecture of HopiSketch.

Methodology
The usability tests were performed on an IBM ThinkPad
laptop with a Wacom Graphire tablet. First, we gave the
designers a warm-up task to get used to the tablet. Next, we
demonstrated HopiSketch and had the designers do some
basic tasks, such as creating pages, adding elements to
pages, and running the designs. Then, we asked the
designers to create an online music store application for a
desktop browser. We retargeted these desktop applications
to Palm devices; the designers were then able to modify the
generated results. About 60 minutes were available for the
complete design task, including creating the desktop
application and editing the Palm version.
Finally, we debriefed the designers and had them fill out a
questionnaire. We were looking for comments addressing
two general themes:
• Were HopiSketch and the generated user interfaces

useful? Would the answer change depending on the
number of devices being targeted?

• How can HopiSketch be enhanced to better support the
design of cross-device applications?

Results
We found that HopiSketch had implementation flaws that
made it difficult for designers to perform some tasks. In
particular, the de-sketching process was not sufficiently
robust and mature to handle all the designers’ sketches,

which led to pages being split and elements within the
pages being laid out in unexpected ways.

Table 2. Summary of participants of our HopiSketch
evaluation.

Participant Characteristics We also found that because the designers only had about
30–40 minutes to design for the desktop, their desktop
designs were not very large. Consequently, some designers
said that it would have been easier to simply re-sketch their
small designs from scratch instead of starting from our
generated user interfaces. Some of them were also slowed
down by their lack of familiarity with the Wacom tablet.

B1 UI designer
Graphic design background
Uses Photoshop and Illustrator
Has worked on > 20 cross-device projects

B2 Interaction designer
Liberal arts background
Uses Photoshop, Fireworks, and Dreamweaver Given the maturity of HopiSketch and the time constraints

of the evaluation, most designers concluded that
HopiSketch was no faster than using paper and pencil for
retargeting the designs that they had created. On the other
hand, five of the six designers saw potential benefits of the
tool within a broader context:

Has worked on < 5 cross-device projects
B3 Information architect

Programming and business background
Uses Photoshop, Visio, and Flash
Has not worked on any cross-device projects

B4 Information architect 1. Two of the designers, Designers B4 and B5, thought
that for large designs, a design tool that can retarget
could potentially save them a lot of time.

Media (TV, photography) background
Uses Visio and Photoshop
Has worked on < 5 cross-device projects

2. Three of the designers also found value in the
generated sketches, even though they were not ideal.
Two of the designers, Designers B1 and B2, thought
that the generated sketches still provided a useful
starting point to design for the second device. Designer
B2 said that by starting from the generated sketches, he
would not forget to implement features in the PC
version for the Palm version. Thus, if a feature was not
present in the Palm version, it was because he
explicitly deleted it from the generated design, not
because he forgot to copy it from the PC version.

B5 UI designer and usability engineer
Computer science background
Uses Illustrator and Dreamweaver
Has not worked on any cross-device projects

B6 UI designer
Graphic design background
Uses Fireworks and Visio
Has worked on < 5 cross-device projects

3. Designer B1 said that the generated sketches were
useful to show to clients, to demonstrate to them how
unwieldy a Palm web site would be if it had all of the
functionality of the PC web site.

4. Another designer, Designer B6, said that he could
imagine that a more robust version of HopiSketch
would generate sketches that would help him “see
potential pitfalls (or opportunities)” in the design for
the target device.

When we asked the designers the minimum number of
target devices that would be required for a retargeting tool
such as HopiSketch to be useful, all but one of the
designers said two devices. One of them said that the tool
would probably be most useful if the two devices were the
same general type, such as from one cell phone to another,
as opposed to from desktop PC to cell phone.
However, when we asked the designers how likely they
were to use a commercial-strength retargeting tool for
early-stage design, the reaction was more mixed. Three
designers were likely to use one, one designer was neutral,
and two said they were unlikely. One of the designers who
was likely to use a retargeting tool said he would do so only
if it were not sketch-based. This is because he would only

use sketch-based tools for conceptual design, not for
designing layouts for specific devices.
Finally, the designers gave us several suggestions that
would make a retargeting tool more useful to them, which
we describe in the next section.
Implications for Cross-Device UI Design Tools
The designers described a number of ways in which they
believe a tool for retargeting designs could be more useful.
Most of the suggestions are related to the theme of letting
designers better understand, guide, and control the
retargeting process. Each of the following suggestions was
made by at least one designer. While these suggestions are
not necessarily representative of the design community as a
whole, we believe each suggestion has merit.
Control over retargeting. Four of the designers mentioned
that they would like to guide the retargeting process
directly. They would like to be able to explicitly tag which
sections of a page should be carried over to the target-
device design, and which sections should be omitted,
before the retargeting process takes place. One designer
said he would like to make the tags conditional on what the
target device is.
Another designer said that, when targeting the Palm, the
tool should not split pages automatically, since the Palm
handheld has scroll buttons. Instead, the tool should create
pages that would scroll and then allow designers to split the
pages themselves. This shows that information about the
devices’ characteristics must be taken into account
throughout the retargeting tool for the tool to be effective.
Iterative design. Many designers wanted to better
understand the retargeting process. For example, some said
they would prefer a more iterative approach than the study
permitted. Due to time and tool constraints, all of the
designers went through the retargeting process only once.
These designers would rather design a little bit for one
device, retarget, look at the results, design a bit more for
the first device, and so on. One designer specifically
mentioned that he would like to see the design for the target
device modified in real time while he worked on the design
for the initial device.
There should also be a tighter relationship between designs
of the same user interface on different devices. With
HopiSketch, a retargeted design has no relationship to the
original design once it has been generated. Ideally, the tool
should be able to propagate changes made in a generated
device-specific design back to the original. However, not
all changes should be propagated. A designer may want to
remove an element in a mobile phone version because it is
unnecessary, but keep it in the desktop version because it
aids navigation. How to support such an intelligent process
remains an open question.
Templates and content replication. Another theme was the
ability to intelligently replicate content. For example,
several designers mentioned that if they wanted a search

box in the upper right-hand corner of every page, they
would like to create a template that contains the search box,
and apply that template to all of the pages in the site.
They also mentioned that if a page is split during
retargeting, some elements in the original page, such as
search or navigation aids, should be replicated on each of
the resulting pages. Designers would need a way to specify
which elements should be replicated, since it would be
difficult to make such decisions automatically. The
challenge is to provide means for specifying which
elements to replicate without burdening the designer or
cluttering the design.
Support for alternative design processes. A cross-device
tool should be flexible enough to support a variety of
design practices, especially since cross-device design is a
new discipline and design practices are still evolving. For
example, HopiSketch was designed to take a user interface
for a large display, like a desktop PC, and retarget it to a
device with a smaller display, like a Palm handheld. One
designer said it was easier for him to add to a design than
subtract from a design, so he would prefer to do the
opposite of HopiSketch: take a Palm user interface and
merge its pages to form a desktop PC version.
Improved page splitting. All of the designers said that the
algorithms for rearranging and splitting up content could be
improved. One designer said that any handwriting and
images should be shrunk to fit the dimensions of the
handheld. Similarly, one designer mentioned that since
Palm handhelds can scroll, groups should never be split
between two or more pages. Instead, the tool should create
a scrolling page that would keep all of the items of a group
together.
Sketch-based interface. Some designers found the sketch-
based interface appealing. Designer B1 said it took “napkin
sketching to a new experiential level without making it
beautiful,” and that it allows him to focus on whether his
ideas are valid. Designer B2 simply said that “it’s a good
way to work.”
Others did not find it as compelling. Designer B4 wanted
additional shape and alignment capabilities, such as
provided by Visio or other diagramming tools. Designer B2
liked sketching, but said he uses sketching only for
conceptual design. For layout design, he would prefer to
use a more structured interface.
Designer B1 suggested that the contents of the pages could
contain a coarse grid similar to graph paper. This would
help, but not force, designers to draw neater sketches, and
would indirectly help the retargeting algorithms, since they
work better when elements are aligned.
Familiar interaction. Some designers expressed reluctance
to learn a new tool interface, and would have liked
HopiSketch’s user interface to have been more similar to

the tools they already use. The most commonly mentioned
tools were Adobe Photoshop and Microsoft Visio.
Handling different classes of devices. There was some
skepticism that our tool would be really useful for
designing user interfaces to be run on different classes of
devices, such as PCs and mobile phones. Designers B1, B2,
and B3 said that the interaction flow is very different
among different classes of devices, and that there is
insufficient support in HopiSketch to handle those
differences.
A cross-device design tool should be able to support the
design of applications whose user interfaces have very
different interaction flows depending on the device.
HopiSketch does not handle such design activities because
it only transforms at the page and widget level. Higher
levels of abstraction within the design are needed to
support disparate interaction flows, such as design patterns
[9].
DAMASK
As a follow up to this work, we implemented a new cross-
device UI design tool called Damask [9] (see Figure 6). It
combines the advantages of designing multiple interfaces
from scratch with the speed of automatically generating
interfaces. With Damask, the designer designs a user
interface for one device by sketching the design and using
design patterns [21] from Damask’s pattern library (see
Figure 7). As the designer creates an interface, Damask
uses the sketches and patterns to construct an abstract
model [7], which captures aspects of the UI design at a high
level of abstraction. Damask uses the abstract model to
generate the other device-specific interfaces, which the
designer can refine. Damask targets three types of
interfaces: desktop web, mobile phone web, and voice
prompt-and-response.

Damask provides a Run window in which designers
interact with their design sketches in a browser that
simulates the devices they are targeting.

Figure 6. Damask’s user interface. The tabs at the top of the

canvas allow the designer to switch between the different
device versions of this design. The Thumbnail window in the

lower right-hand corner shows a miniature view of the
design.

Figure 7. Damask’s pattern browser. The list of available
patterns is on the left, and the Shopping Cart pattern is shown

on the right, under the search results.

As a result of our studies, Damask incorporates many of the
design considerations discussed above. For example, as the
designer creates a UI for one device, the UIs for the other
devices are generated synchronously, allowing a highly
iterative design process. Damask’s user interface allows
designers to indicate which parts of a UI design should be
retargeted and which should not, has better support
methods of interaction besides sketching such as text entry,
has a “graph paper”-like background for pages, includes the
concept of page templates, and incorporates more familiar
UI elements, such as more keyboard shortcuts, pull-down
menus, and a toolbar, although support for sketching
remains.
RELATED WORK
Here we contrast our work to model-based user interfaces
and tools that transform UIs from one device or modality to
another.
Model-Based User Interfaces
Our work is closely related to the concept of model-based
user interfaces, designing user interfaces based on an
abstract model of the interface rather than visual
appearance [7]. The model describes the interface at a
higher level of abstraction than the actual widgets. For
example, instead of describing a dialog box as having three
radio buttons and two check boxes, an abstract model
would describe it as having one part where the user can
select one of three items, and two other on-off selections.
This level of abstraction allows for rendering of the user
interface in multiple ways, such as using a drop-down list
or presenting a voice menu instead of radio buttons.

While model-based user interfaces offer the possibility of
creating flexible interfaces that can adapt to their
environment, they have not been widely adopted in the
commercial software development world, which has
instead gravitated towards visual interface builders. We
believe one reason for the lack of acceptance is the fact that
many model-based user interface tools do not match or
augment the work practices of designers. They often force
designers to think at a high level of abstraction too early in
the design process, by making them design in terms of
abstract widgets (e.g., [18, 20, 25]), or by specifying a task
model which is then transformed into a concrete user
interface (e.g., [7, 17]). Designers are accustomed to
thinking about concrete interfaces at the beginning. In
addition, specifying models often requires the designer to
deal with preconditions, postconditions, and conditionals.
This starts to look like programming, at which most
designers are not skilled, so specifying models impedes
their main task of designing user interfaces.
The philosophy of most model-based user interface
research is that the model-based tools would be the primary
way to create the finished user interface, although many
tools expect the user interface to be later modified
somewhat by the designer. In contrast, our tool is targeted
towards prototyping. We do not expect the designer to use
our system to create the final user interface, nor do we
expect its generated user interfaces to be used without
modification. Since we are targeting the creation of
prototypes, the generated user interface does not need to be
ideal—in the early stages of design, the designer is
concerned more with the user’s interaction flow than with
the details of the interface [24].
User Interface Transformation Tools
There has been much work on automatically transforming
interfaces meant for one device or modality to another.
Many of these projects have focused on transforming
existing, finished desktop web interfaces to handheld
interfaces at run-time [4, 8, 11]. Unfortunately, shrinking
interfaces from large desktop displays to small handheld
displays often results in awkward interaction. Others have
worked on converting graphical user interfaces to audio
interfaces [13, 16], mostly to benefit the blind and visually
impaired. With most of these tools, designers cannot
modify the results of the interface transformation process.
Since our tool is not meant for the final implementation of
user interfaces, designers are free to modify the generated
UI design.
Ultraman [19] provides a way for designers to control the
transformations, but it assumes they are comfortable with
the concept of trees, grammars, and writing code in Java.
Our tool is targeting a different audience at a different point
in the design cycle: designers with little or no programming
experience, who are working at an early stage of design
before any interface is completely specified.

Model-Based Transformation Tools
There are several model-based projects that specifically
address the issue of creating user interfaces targeted at
multiple devices. Eisenstein, Vanderdonckt, and Puerta [6]
describe using MIMIC [17] to create models which describe
cross-device user interfaces. Their methodology involves
mapping common tasks in a task model to presentation
models optimized for the task. Ali et al [1] discuss
designing a cross-device user interface using three types of
models: an abstract logical model, physical family models,
and platform-specific user interface descriptions in UIML. In
contrast, our tool avoids directly exposing models to the
user interface designer.
PIMA [3], Hopi [2], and Microsoft’s ASP.NET Mobile
Controls [12] are tools for designing cross-device web
applications. A designer using either of them describes the
application’s user interface in an abstract representation, by
laying out abstract widgets (such as “choose one of many
items”) linearly in a constrained Visual Basic-like form
designer. The representation is then converted into concrete
device-specific UIs. However, these tools are not
appropriate for early-stage design, because designers tend
to think about concrete user interfaces, not abstract
representations.
Calvary, Coutaz, and Thevenin [5] discuss a process
framework for developing plastic interfaces, which can
adapt to different devices. In addition to the typical model-
based approach, in which a designer creates a series of
models from top-level abstract models to a concrete
interface, the framework also covers translations between
platforms, which may happen at any model abstraction
level. This framework provides a useful way of thinking
about how to develop cross-device UIs. In our tool,
however, top-level abstract models are not directly exposed,
so such a framework is not directly applicable.
There are several projects that specify platforms for
creating universal remote controls (e.g., [15, 26]). These
platforms use high-level descriptions of a remote control’s
user interface which can then be realized on a variety of
hardware devices, such as PDAs or Braille readers. The
target domain of universal remote controls is narrower
(remote controls for appliances vs. web interaction), but the
user interfaces that are rendered from the abstract remote
control description must be appealing and useful
immediately, without additional tweaking. Our work, on
the other hand, is targeting a broader set of user interfaces
(e.g., general web-style interaction on PCs), but the
interfaces that are generated will most likely be modified
by the user interface designers before being released.
CONCLUSION
We found that taking a two-pronged approach to studying
the design process of cross-device UIs gave us different but
valuable information. We got a general sense of the design
process by interviewing designers in their workplaces, and

we got detailed feedback about what a design tool should
have by building and evaluating a prototype of such a tool.
Through these studies, we have found that the concept of a
tool, that retargets UIs for a given designer, fits how
designers currently split up responsibility of handling
multiple devices among themselves. A tool that supports
design patterns will allow designers to take advantage of
them more systematically. The tool needs to give the
designer a high degree of control over the retargeting
process. Simply letting designers modify the generated
interfaces is not sufficient. Designers should be able to
annotate their designs so that the tool is more intelligent in
its retargeting process, and the tool should be flexible
enough to allow for highly iterative design and a variety of
design processes. We are incorporating these lessons into
Damask, our next early-stage cross-device UI design tool.
ACKNOWLEDGMENTS
We would like to the designers who participated in both
studies. We would also like to thank John Karat, Noi
Sukaviriya, and Tracee Wolf for helping us with the design
of our study and questionnaire; Pauline Ores and Kate
Swann for helping us recruit participants for our user study;
and Frederique Giraud, Ashish Kundu, Yves Gaeremynck,
and Vianney Chevalier for their contributions to the
implementation of HopiSketch.
REFERENCES
[1] Ali, M.F., M.A. Pérez-Quiñones, M. Abrams, and E. Shell.

Building Multi-Platform User Interfaces With UIML. In
Proceedings of 2002 International Workshop of Computer-
Aided Design of User Interfaces: CADUI'2002. Valenciennes,
France. pp. 225-236, May 15-17, 2002.

[2] Banavar, G., L.D. Bergman, Y. Gaeremynck, D. Soroker,
and J. Sussman, Tooling and System Support for Authoring
Multi-Device Applications. Journal of Systems and Software
(Special Issue on Ubiquitous Computing), 2004. 69(3): pp.
227-242.

[3] Bergman, L.D., G. Banavar, D. Soroker, and J. Sussman.
Combining Handcrafting and Automatic Generation of User-
Interfaces for Pervasive Devices. In Proceedings of 2002
International Workshop of Computer-Aided Design of User
Interfaces: CADUI'2002. Valenciennes, France: May 15-17,
2002.

[4] Buyukkokten, O., H. Garcia-Molina, A. Paepcke, and T.
Winograd, Power Browser: Efficient Web Browsing for
PDAs. CHI Letters: Proceedings of Human Factors in
Computing Systems: CHI 2000, 2000. 2(1): pp. 430-437.

[5] Calvary, G., J. Coutaz, and D. Thevenin. A Unifying
Reference Framework for the Development of Plastic User
Interfaces. In Proceedings of Engineering for Human-
Computer Interaction: EHCI 2001. Toronto, ON, Canada:
Springer-Verlag. pp. 173-192, May 11-13, 2001.

[6] Eisenstein, J., J. Vanderdonckt, and A. Puerta. Applying
Model-Based Techniques to the Development of UIs for
Mobile Computers. In Proceedings of International
Conference on Intelligent User Interfaces: IUI 2001. Santa
Fe, NM: ACM Press. pp. 69-76, January 14-17, 2001.

[7] Foley, J.D. and P.N. Sukaviriya. History, Results and
Bibliography of the User Interface Design Environment

(UIDE), an Early Model-Based System for User Interface
Design and Implementation. In Proceedings of Design,
Specification and Verification of Interactive Systems: DSV-
IS'94. Carrara, Italy. pp. 3-14, June 8-10, 1994.

[8] Fox, A., I. Goldberg, S.D. Gribble, D.C. Lee, A. Polito, and
E.A. Brewer. Experience With Top Gun Wingman: A Proxy-
Based Graphical Web Browser for the 3Com PalmPilot. In
Proceedings of IFIP International Conference on Distributed
Systems Platforms and Open Distributed Processing:
Middleware '98. Lake District, UK, September 15-18, 1998.

[9] Lin, J., Using Design Patterns and Layers to Support the
Early-Stage Design and Prototyping of Cross-Device User
Interfaces, Unpublished Ph.D. Dissertation, Electrical
Engineering and Computer Sciences, University of
California, Berkeley, 2005.
http://www.cs.berkeley.edu/~jimlin/research/damask/disserta
tion/jlin_dissertation.pdf

[10] Lin, J., M.W. Newman, J.I. Hong, and J.A. Landay, DENIM:
Finding a Tighter Fit Between Tools and Practice for Web
Site Design. CHI Letters: Proceedings of Human Factors in
Computing Systems: CHI 2000, 2000. 2(1): pp. 510-517.

[11] Lopez, J.F. and P. Szekely, Web Page Adaptation for
Universal Access, in Universal Access in HCI: Towards and
Information Society for All (Proceedings of 1st International
Conference on Universal Access in Human-Computer
Interaction, New Orleans, LA, August 8-10, 2001), C.
Stephanidis, Editor. Lawrence Erlbaum Associates: Mahwah,
NJ. pp. 690-694, 2001.

[12] Microsoft, ASP.NET Mobile Controls. Microsoft Corporation:
Redmond, WA.
http://msdn.microsoft.com/mobility/prodtechinfo/devtools/as
p.netmc/

[13] Mynatt, E.D. and W.K. Edwards. An Architecture for
Transforming Graphical Interfaces. In Proceedings of ACM
Symposium on User Interface Software and Technology:
UIST '94. Marina del Rey, California. pp. 39-47, November
2-4, 1994.

[14] Newman, M.W. and J.A. Landay. Sitemaps, Storyboards,
and Specifications: A Sketch of Web Site Design Practice. In
Proceedings of DIS 2000: Designing Interactive Systems.
New York, New York. pp. 263-274, August, 2000.

[15] Nichols, J., et al., Generating Remote Control Interfaces for
Complex Appliances. CHI Letters: Proceedings of User
Interfaces and Software Technology: UIST 2002, 2002. 4(2):
pp. 161-170.

[16] Olsen, D.R., S.E. Hudson, R.C.-M. Tam, G. Conaty, M.
Phelps, and J.M. Heiner. Speech Interaction with Graphical
User Interfaces. In Proceedings of IFIP TC.13 Conference on
Human Computer Interaction: INTERACT2001. Tokyo,
Japan: IOS Press, 2001.

[17] Puerta, A. The Mecano Project: Comprehensive and
Integrated Support for Model-Based Interface Development.
In Proceedings of 1996 International Workshop of
Computer-Aided Design of User Interfaces: CADUI '96.
Namur, Belgium: Namur University Press. pp. 19-36, June 5-
7, 1996.

[18] Schreiber, S. Specification and Generation of User Interfaces
with the BOSS-System. In Proceedings of East-West
International Conference on Human-Computer Interaction:
EWHCI'94. St. Petersburg, Russia: Springer-Verlag. pp. 107-
120, August 2-6, 1994.

http://www.cs.berkeley.edu/%7Ejimlin/research/damask/dissertation/jlin_dissertation.pdf
http://www.cs.berkeley.edu/%7Ejimlin/research/damask/dissertation/jlin_dissertation.pdf
http://msdn.microsoft.com/mobility/prodtechinfo/devtools/asp.netmc/
http://msdn.microsoft.com/mobility/prodtechinfo/devtools/asp.netmc/

[19] Smith, I., Support for Multi-Viewed Interfaces, Unpublished
Ph.D. Dissertation, College of Computing, Georgia Institute
of Technology, Atlanta, GA, 1998.

[20] Szekely, P., P. Luo, and R. Neches. Beyond Interface
Builders: Model-Based Interface Tools. In Proceedings of
Human Factors in Computing Systems: INTERCHI '93.
Amsterdam, The Netherlands: ACM Press. pp. 383-390,
April 24-29, 1993.

[21] van Duyne, D.K., J.A. Landay, and J.I. Hong, The Design of
Sites. Boston: Addison-Wesley, 2002.

[22] W3C HTML Working Group, XHTML™ 1.0: The Extensible
HyperText Markup Language (Second Edition), 2002.
http://www.w3.org/TR/xhtml1/

[23] W3C XForms Working Group, XForms 1.0: W3C Working
Draft, 2002. http://www.w3.org/TR/xforms/

[24] Wagner, A., Prototyping: A Day in the Life of an Interface
Designer, in The Art of Human-Computer Interface Design,
B. Laurel, Editor. Addison-Wesley: Reading, MA. pp. 79-84,
1990.

[25] Wiecha, C., W. Bennett, S. Boies, J. Gould, and S. Greene,
ITS: A Tool for Rapidly Developing Interactive Applications.
ACM Transactions on Information Systems, 1990. 8(3): pp.
204-236.

[26] Zimmermann, G., G. Vanderheiden, and A. Gilman.
Prototype Implementations for a Universal Remote Console
Specification. In Proceedings of Human Factors in
Computing Systems: CHI 2002 Extended Abstracts.
Minneapolis, MN. pp. 510-511, April 20-25, 2002.

http://www.w3.org/TR/xhtml1/
http://www.w3.org/TR/xforms/

	ABSTRACT
	ACM Categories and Subject Descriptors
	General Terms
	Keywords

	INTRODUCTION
	STUDY OF CURRENT PRACTICES
	Responsibilities of the Designers
	Scope of Cross-Device Projects
	Organization of Project Teams
	Managing UI Consistency Across Devices
	Tools, Documentation, and Patterns
	Need for Synchronized Changes Across Devices
	Implications for Cross-Device UI Design Tools

	HOPISKETCH: A PROTOTYPE OF A CROSS-DEVICE DESIGN TOOL
	User Interface
	Architecture

	EVALUATION OF HOPISKETCH
	Participants
	Methodology
	Results
	Implications for Cross-Device UI Design Tools

	DAMASK
	RELATED WORK
	Model-Based User Interfaces
	User Interface Transformation Tools
	Model-Based Transformation Tools

	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

