Using Reasoning Threads in Enhanced Semantic
Networks

Richard Cardone, Rangachari Anand,
Xuan Liu, Leora Morgenstern, Erik Mueller,

Doug Riecken
IBM Watson Research
Hawthorne, New York, USA
{richcar, ranand, xuanliu, leora, etm, riecken}
@us.ibm.com

ABSTRACT

A fundamenta problem limiting the use of knowledge based
systems is the difficulty of managing and evolving knowledge over
time. As the amount of knowledge in a knowledge base KB)
increases, the ability to predict how any change will affect system
behavior decreases. Moreover, bhecause of the highly
interconnected nature of knowledge, KB complexity can grow
exponentialy with the number d facts and rules. We address this
scaability problem by leveraging enhanced semantic networks
(ESN's) and the idea of reasoning threads. We describe the
design, implementation, and capabilities of our ESN system, the
Semantic Engine, and show how to build useful knowledge base
systems with it. We also present novel static and dynamic analysis
techniques that aid in knowledge maintenance. Our static anaysis
can detect anomdlies, such as output states that can never be
reached, and can be used to compare the before and after effects
of a KB change. Our dynamic analysis provides immediate
feedback to guide knowledge engineers in an interactive authoring
environment.

Categories and Subject Descriptors

D.2.3 [Software Engineering]: Coding Tools and Techniques,
D.2.4. Software/Program Verification. 1.2.4 [Artificial Intelli-
gence]: Knowledge Representation Formalisms and Methods

Keywords
Semantic network, knowledge base verification.

1. INTRODUCTION

Knowledge based systems (KBS's) model human knowledge and
reasoning to address problems that are not easily solved using
determinigtic dgorithms. These systems usually apply some type of
search strategy to problems that can have zero or more solutions.
For example, a smplistic implementation of a production rule system
starts with a set of facts and sequentially determines if those facts

Calvin Lin
Department of Computer Sciences
University of Texas at Austin
Austin, Texas, USA

lin@cs.utexas.edu

satisfy the antecedents of each of the system’s rules. Whenarule
is satisfied, its consequert can add new facts to working memory,
which spawns a new iteration of the reasoning process. The order
in which the rules are visited and the facts are added congtitute a
search strategy; the search space generated by such reasoning can
quickly become intractable as a knowledge base grows. Algorithms
such as RETE [6] and its successors have been developed to make
such processing more efficient.

The important point, however, is that this computationa complexity
not only makes KBS reasoning difficult for computers to execute,
but it also makes it difficult for humans to understand. Indeed, a
crucia question in knowledge base (KB) management is, “How will
aparticular change to a KB affect system behavior?” The answer
to this question depends on understanding how reasoning interacts
with knowledge and on the availability of tools that help developers
analyze that interaction.

KBS stypicaly use some variant of first-order logic to reason about
their knowledge. The knowledge itself can have many possible
representations, induding rule bases, semantic networks, frames[9],
and description logics [12]. As the representation becomes more
expressive, reasoning becomes computationaly more complex, and
system behavior becomes harder for developers to predict [3].

We argue that a KBS can execute in a smplified, understandable
way and till do useful work. This paper introduces the Semantic
Engine (SE), a knowledge base system that uses enhanced
semantic networks (ESN's) and a simplified approach to reasoning.
This smplified approach dlows us to define reasoning threads,
which are the valid paths through the ESN that our reasoner
explores. By encapsulating knowledge in alocalized representation,
reasoning threads allow our system to execute quickly and alow us
to perform analyses that facilitate knowledge creation and evolution.
We present a nove dtatic anadysis framework that detects
anomdies, intereting characteristics, and the effects of KB
changes. We use dynamic analysis to guide knowledge engineers
as they create and modify KB content. Developers use these
andysistools to understand and verify the behavior of KBS's.

This paper makes the following contributions:
We show how ESN’s smplify KB reasoning.

We present novel datic analysis techniques for
verification of ESN systems.

We present new dynamic analysis techniques that
interactively guide ESN evolution.

We describe how to build useful expert systems with the
Semantic Engine.

The larger view is that KBS's face the same life-cycle challenges
as conventional software systems, as well as a few additiona
chalenges. Thus, one goa of this paper is to draw attention in the
software engineering community to the unique issues and
opportunities presented by KBSss.

Section 2 provides background on KBS software engineering issues.
Section 3 discusses SE's main concepts and provides background
for the static and dynamic analyses sections, Sections 4 and 5,
respectively. Section 6 describes SE applications. Section 7
discusses SE's strengths, weaknesses, and future work. We
conclude with related work and final remarks.

2. BACKGROUND

The key architectural components of a KBS are (1) a knowledge
base that contains a collection of related facts and rules, (2) a
reasoning engine (or reasoner) that uses the knowledge base to
draw conclusions and prove new facts, and (3) an application
program that invokes the reasoning engine for specific inquiries.
This tripartite architecture separates various concerns, which should
simplify system maintenance, comprehensibility, and evolution [15].
The modularity of the KBS architecture mirrors that of database
systems. Specificdly, the KB’s role is to store knowledge; the
reasoner’s role is to execute logic over that stored knowledge; and
the application's role is to query the knowledge.

The anadogy to database systems, however, breaks down whenwe
recognize that KBs do not contain passive facts so much as the
rules by which new facts can be derived, and that reasoners are not
so much retrieval engines as they are logic-based search engines.
Reasoners implement some form of mathematica logic in order to
prove or disprove conjectures in the knowledge domain. As the
number of rules in a KB increases, the interconnections between
those rules—between the consequents and antecedents of different
rules—can grow exponentially and can lead to search spaces too
large for reasoners to exhaustively inspect.

From a software engineering point of view, KBS development
presents al the life-cycle challenges of conventiona software plus
unique challenges associated with KBs and reasoners. In particular,
extra condderation must be given to knowledge acquisition,
encoding, verification, and validation. In addition, the ability for
humans to understand and predict system behavior is important for
knowledge evolution. The remainder of this section discusses how
each of these condderations impacts the development of correct
and relisble KBS's.

To populate a KB, knowledge is acquired from domain experts and
then encoded into the KB'’s knowledge representation. The pitfals
in acquiring domain knowledge from experts are well-documented
and include restrictions on the availability of experts, the difficulty
experts can have in explaining their knowledge, and the fact that
experts often disagree with each other [22]. Knowledge encoding
is aso error prone; checking it can require time-consuming
coordination between domain experts and knowledge engineers.

Before a KBS is deployed, it is verified to determine if it executes
as specified and it is validated to determine if it meets user require-
ments. Verification can be thought of as a prerequisite of vaidation,
since a system that does not conform to specification is unlikely to
meet user requirements. For correct and efficient reasoning, a KB
needs to be consistent, complete, and devoid of circularities and
redundancies. These terms have different meanings for different
knowledge representations, but, in general, a KB can be staticaly
anadyzed to verify its structure and detect anomalies. Anomalies
do not necessarily indicate KB errors, but instead report to the
knowledge engineer content that might warrant closer examination.

Anomdy detection is either domain dependent or independent.
Domain dependent approaches use metadata to constrain KB con-
tent. Since this metadata aso needs to be verified and maintained, it
can complicate the origind problem of KB verification [13].
Domain independent verification first trandates a KB into a
representation suited to analysis, such as a graph, and then tests for
various properties. These properties can be as simple as detecting
rules that can never fire in a rule-base or detecting disconnected
regions in a semantic network. Anomalies have been classifiedin
severa studies [4][13][16]; here is a summary of the
Preece/Shinghal formd classification scheme [17]:

Redundancy — when rules are extraneous, subsumed, or unusable
Ambivalence — when vdid input leads to contradictory results
Circularity — when reasoning from arule leads back to that rule
Deficiency — when vaid input is not used or leadsto no output

Whether the above conditions represent actua KB flaws often
depends on the reasoning procedure used. For example, the SE
reasoner handles cases of circularity without generating aruntime
error. Thus, the detection of circularity during analysis would only
be informationd in SE.

KB vdlidation is concerned with the reliable generation of
appropriate output for every possible input. A fundamental issue is
that directly testing every set of input values is impractical in dl but
the simplest gystems. Another problem is that KBS's are usedin
domains where there can be more than one acceptable result and
part of the problem is choosing among possible results. For
instance, an expert system might be conddered reliable if it dways
agrees with experts in simple cases and if it agrees with at least
some experts in complex cases. A common theme in KB validation
is finding small yet representative sets of test cases that alow one
to confidently predict system behavior [13].

KBS's typicaly address problems that involve competing goals,
understanding context, or using common sense—in a word,
problems that demand judgment. For example, KB technology is
used to diagnose medica conditions [21], render lega advice [23],
and configure complicated systems [1]. In genera, KB’s need to
change as quickly the domains they model. But when a KB is
modified, how can one guarantee that the KB isdill condstert, that
the quality of its output hasn't deteriorated, or that the system will
behave as intended? Consider the problem of vdidating changesto
the XCON system, which by 1988 contained over 10,000 rules for
configuring DEC computers. Then consider that approximately
40% of the rules were changed, added, or deleted each year [1].

The ability to safely evolve a KB is crucid in judifying a KBS
investment.

Our main motivation isto increase the use of KBS's by smplifying
KB management. In particular, we want to build expert systems
using a knowledge representation hat is comprehensible to non-
specidists. Our approach uses semantic networks that can be
graphicaly displayed and that behave operationaly like decision
trees or even linear reasoning threads. This Ssmple operationa
mode is more accessible to non-technical domain experts [23] and
can improve knowledge acquisition and encoding. Our smplified
approach should aso make verification and validation easier, as well
as benefit explanation generation and other natura language
processing that expert systems often perform.

3. THE SEMANTIC ENGINE (SE)

3.1 Enhanced Semantic Networks

A semantic network (SN) is adirected graph that consists of nodes
that represent concepts and edges that represent relations between
concepts. SN'’s are appealing because their graphical structure can
help us visudize reasoning. Intuitively, paths in an SN should
correspond to reasoning chains. Upon closer examination, however,
arbitrary paths in a SN do not generally correspond to valid

reasoning [24].

fsa isa
- isa
i - -
e Ursidae
isa ; isa
- {ia grass
I house cat] lliml] g i
]
- S eals
Ln‘[: .
i § Fla i :
panda i

Mew York

Figure 1: Only some SN paths correspond to valid reasoning

Consider Figure 1, which depicts a SN that represents knowledge
about the anima kingdom and Bill’ s visit to the Bronx Zoo. We can
assign meaning to many paths. For example, the path from penny to
mammal intuitivdy means that “Penny is a mammal.” Many paths,
however, do not have an obvious meaning: What can we conclude
about the path from Bi || to pl ant ? That Bill isaplant? That Bill
eats some plants, dl plants, or only plants? In other cases, it’s not
clear how we draw a correct conclusion: When traversing the path
from Bi 11 to New York, how can we conclude that Bill islocated in
New York? In general, arbitrary SN’s have no clear semantics and
no clear specification of vaid reasoning.

One way to force al pathsin a SN to be meaningful is to limit the
expressivity of the network. For example, nheritance networks
build meaningful taxonomies by limiting their relaions to subtype
(isa) and membership (inst). Thisapproachis restrictive, however,

since one can only reason about whether something is a member of
aclass or whether one classis a subset of another.

In SE, we propose a solution that lies between loosdy defined
reasoning and limited, sngle-mode reasoning. The key idea isto
recognize that there are specific patternsin a SN that correspond to
vaid reasoning. We identify valid reasoning paths in a SN by
determining whether a path fits any of a predetermined set of
reasoning patterns. We define vaid reasoning in a SN by means of
these fixed patterns, which we encode as regular expressions. The
resulting enhanced semantic network (ESN) extends the
expressiveness of inheritance networks while maintaining a precise
definition of valid reasoning.

An ESN is a semantic network in which each node is specified with
a node type and each link (edge) with alink type. Node types and
link types define two digoint, finite sets in an ESN. Each ESN is
also associated with a list of \did reasoning patterns, which are
specified as regular expressions (regexes) composed using node
types and link types.

LeadsTo freciwdes

Situation'Flans o
hire amployses

Shuationsmall

SiuatienHas businass cusiomer

amployess

Frigpem
L

g - freclmdie
Tuncludes MeedMasd o provids e

hor employaes

L L
NecdMend to help fimance HNeed'head o help finance
employes relirement ermployes madical care

NervedBy

] Kerved By
Pra-ductDatinad

contricution pension plan

| Served By

x
Product Empioyes
madical insurancs plan

PreductCefined benarg
pensicn plan

Figure 2: Small business banking ESN

Figure 2 shows an ESN fragment that models banking services for
small businesses. Each node is labeled with its type and its name;
each link is labeled with its type. The regex below, which we will
cal the Recommend regex, defines reasoning paths that begin at
Situation nodes and end at Product nodes.

Stuation ((LeadsTo Stuation) | (Includes Situation))*
Triggers Need (Includes Need)* ServedBy Product

In general, a regex garts with one or more node types and is fol-
lowed by zero or more link/node type sequences. Any number of
regexes can be defined on an ESN. For example, the regex,
Product -ServedBy Need, can be used to discover the immediate
Needs served by a Product (the minus sign specifies backwards
traversal on ServedBy links).

To further restrict traversal, ESN’s dso support formulas on nodes
and links. For instance, e Recommend regex above generates
nine paths, one that connects each Situation to each Product. If the
following formula appears on the “Employee medicd insurance
plan” node, then traversa would only proceed to that node for
businesses with more than five employees.

Number OfEmpl oyees(Customer) > 5

ESN formulas are formulas in the first-order logic sense: Boolean
expressions that contain arithmetic, relational, and logical operators.
The aipported dta types are string, number, Boolean, and user-
defined enumerations. The vaue of an enumerated type can be
exigtentidly or universaly aqantified in a formula Formulas can
also reference strongly typed, user-defined functions. These
functions take zero or more parameters and return a supported type.
Functions that return Boolean can be thought of as predicates in
first order logic. In the formula above, the function
Number OfEmployees takes a parameter of type Person (assume
Customer is an enumerated value of Person) and returns a number.

3.2 SE Process M odel

In this section, we discuss how SE reasons with ESN’s. A formal
treatment of ESN reasoning demonstrates that SE reasoning is
equivaent to a subset of first-order logic [10].

On input, the SE reasoner takes an ESN, aregex, an optiona start
node ligt, and an optiond profile. The profile defines a set of read-
only facts that are used to evaluate node and link formulas. These
facts are specified as assignments to grounded functions (i.e,
functions with no variables). For example, the following fact would
cause the formula presented in the last section to evaluate to true:
Number OfEmpl oyees(Customer)=20.

Start nodes are nodes where the reasoner begins regex matching.
If start nodes are provided as input, they are the only nodes used to
begin matching. Otherwise, the reasoner calculates the set of start
nodes before proceeding. Start nodes are calculated using a
speciadly designated formula, the start condition formula (or
sformula), which can be defined on nodes. When generating the
start node set, the reasoner uses profile facts to evaluate dl
sformulas in the ESN. The nodes whose sformulas evaluate to true
are added to the start node set.

During reasoning, the SE reasoner searches for dl valid paths in
the ESN. Vadid paths are those that match aregex. Regex match
ing corresponds to constructing a string from a path’s node and link
types and determining if the regex accepts that string. Paths begin
at start nodes; each time a regex match occurs, the reasoner checks
for an optiona precondition formula (pformula) before advancing.
These formulas, introduced in the last section, must evaluate to true
for traversd to continue adong a path. Reasoning ends when
traversal has been attempted on dl vaid paths.

On output, the SE reasoner reports results in a reasoning graph.
Included in the reasoning graph are the output nodes, which
represent accepting states in the regex; the reasoning threads,
which are vaid paths whose formulas al evauate to true; and alist
of unknown atoms, which are grounded functions' whose values
are not known. During traversdl, if the reasoner encounters a
function whose value is unknown, the reasoner adds the function to
the unknown atoms list and aborts the reasoning path.

SE reasoning reduces computational complexity and increases over-
all comprehensihility in severd ways. First, by specifying vdid
reasoning, regexes diminate most network paths from consdera-

! To ground a formula, existentially quantified variables are replaced with a
disjunction of enumerated values and universally quantified variables
are replaced with a conjunction of enumerated values.

tion. Also, SE profiles act as read-only working memory during
reasoning, so the order in which paths are processed does not affect
the final reasoning result. Moreover, reasoning thread traversal is
idempotent and independent of other traversals.

An ESN corresponds to a set of well-formed formulasin first-order
logic and SE reasoning corresponds to simple theorem proving over
those formulas [10]. Indeed, ESN’s provide a remarkably compact
representation for rules. One can view any lega path in an ESN as
being analogous to a rule in a rule-based system, and a small ESN
can yidd a large number of legd paths. This compact
representation is one of the reasons KB’s have been relatively smdl
in the applications that we have written (see Section 6).
Compactness is dso due in part to a concise and powerful ontology
that we have developed [11].

SE reasoning aso provides expert systems with aframework for a
conversational interaction with users. The reasoner delivers its
conclusions or recommendations as output nodes. The reasoner
also indicates that reasoning could be extended if more information
were known by returning unknown atoms. An application can use
these unknown atoms to query users for more information and then
invoke the reasoner with an updated profile. SE provides a natura
language processor that generates English questions from unknown
atoms and generates explanations from reasoning threads. This
language support improves user experience with little effort from
application developers.

3.3 SE Architecture

Figure 3 below shows the software stack for SE applications and
for the SE authoring environment. The SE Authoring Workbench
consists of editors, which include graphical and text-based tools, and
andyzers, which we discuss in detall in the following sections. The
authoring nodules interact directly with the KB and with the SE
Runtime.

SE Applications

Conversation AP I
SE AFI

Authoring Workbench

5E Rumntime

[Reasaonar | | NLP |

Editors

Analyzers

ESH Knowledge Base

Figure 3: SE Runtime and Design-Time Ar chitecture

The man components of the SE Runtime environment are a
reasoning engine and a natural language processor (NLP). Both
components interface with the KB. We described the reasoner in
the previous section. The NLP dynamicaly generates explanations
from reasoning threads, questions from unknown aoms, and
question justifications from unknown atoms and partial paths. The
NLP uses various heurigtics and tuning parameters to generate
concise, non-repetitive, natura sounding, English text that can be
presented to users by an application. We do not discuss language
processing in depth in this paper.

The SE API provides he public interface to the SE Runtime.
Applications use the SE API to invoke the reasoner and the lan
guage processor. The Conversation APl supports conversationd

control flow in interactive applications. The main function of this
layer is to support one or more concurrent dialogues between an
expert system and its users. Each didogue consists of currently
known facts, questions posed by the system, and recommendations
offered by the system on various user-selected topics.

SE is implemented in Java under Eclipse. The authoring environ-
ment is integrated into the Eclipse workbench as plug-ins; the SE
runtime code executes under Eclipse or as standalone Java code.
All the above components have been implemented, though the
Conversation APl design is dill evolving. In Section 6, we discuss
our experience building severd prototype systems and one
production system using SE.

4. STATIC ANALYSIS

SE uses both declarative and procedural information to staticdly
anadlyze a KB. The declarative information consists of KB nodes,
links, formulas, functions, regexes, and types. The procedura
information consists of valid paths calculated by the reasoner. In
practice, we can usudly enumerate al valid paths during anaysis
because of the filtering efficiency of regexes. For example, in an
ESN application that contains over 600 nodes and 900 links, the
main regex generates only 21 valid paths. This ability to statically
inspect dl relevant paths means that we can perform analyses that
would not be practica in other systems.

4.1 How Static AnalysisWorks

The basic idea behind our analysis is to calculate the facts required
to traverse any node or link in any reasoning thread. This idea,
inspired by compiler dataflow analysis, provides the raw data used
to characterize KB structure and to find KB anomalies. We begin
by describing how such data are calcul ated.

Let P be avalid path induced by a regex in some KB and let Abe a
node or link in P. We define a model, M(A), to be a set of facts
that satisfies the precondition formula a A, the precondition formu-
las for dl nodes and links that precede A in P, and the start condition
of P's start node. A fact is a ground atom of the form,
<functionSymbol > (groundedArgs)=< constant>, such as
Age(Man)=33, IsMarried(Man)=True, or Spouse(Man)="Mary'.
When the reasoner traverses a path, empty pecondition formulas
ae implicitly sdtisfied; otherwise, the reasoner uses facts to
determine if it can proceed. This traversal can be thought of as
computing a model a each point in the path.

We daticaly calculate models by beginning at a start node and as-
suming whatever facts are necessary for traversal to continue on
the path. We convert our caculation into a formula satisfiability
(SAT) problem by encoding SE formulas as formulas of Boolean
variables in propogtiona caculus. Since A can have zero or more
modes, we can only say what possible sets of facts could be in
effect at runtime. If A has no modds, then we know the reasoner
cannot traverse that point in the path.

Given (i) aKB, (ii) one or more regexes, (iii) an optiond input node
set, and (iv) an optiond initid fact set, our god is to daticdly
caculate al modds at dl pointsin the vdid paths. Our agorithm
performs the following steps:

1 Generate all valid paths that conform to the regexes.

2. Prepare formulas for CNF conversion.

3. Generate congtraints and complete CNF conversion.
4. Encode CNF formulas into DIMACS format.
5. UseaSAT solver to find all models.

Step 1 generates valid paths by running the reasoner while ignoring
dl formulas. If multiple regexes are specified, we invoke the
reasoner with each regex and accumulate the resulting paths. For
this discussion, we assume the common case of a single regex.

Step 2 prepares formulas for conversion to conjunctive norma form
(CNF: conjunction of digunctions) and, ultimately, to the standard
DIMACS [5] format for SAT solver input. For each formulaon a
path, we perform dgebraic and syntactic simplification; we ground
quantified formulas; we substitute vaues from initia facts where
possble; and we replace cardindity, implication, and equivalence
expressions with conjunctive and digunctive expressions. Formulas
can only be quantified over enumerated types, so we have the
closed world assumption that aways permits grounding. Cardindity
expressions, which have the form min {fy, f5,..., fn} max, specify a
minimum and maximum number of Boolean formulas, f;, 0< i =n,
that must evaluate to true. Cardinality expressions are converted to
adigunction of conjunctions.

Step 3 preserves semantics when converting ESN formulas into
propositiond formulas. Conversions involving (1) equdity expres-
sions with literds, (2) range expressions with literals, and (3)
multiple atom expressions require specia consideration.

Consider the equdity expression f(args)=L;, where f(args) is a
ground atom and L; isaliteral value. We can represent f(args)=L;
with the propositiona variable v1 and represent the negated expres-
sion, f(args)?L;, with -v1. Similaly, variable v2 can represent
f(args)=L,, L1?L,. If both equdity expressions appear in formulas,
then we insert the clause (-v1 | -v2) wherever v1 appears to
indicate that v1 implies -v2. We do asimilar insertion wherever v2
appears. These insartions preserve the original ESN semantics
where f(args) can equal exactly one vaue Ly, Ly, ..., Ly, where
Li?L; if i ? j. We generdize this constraint insertion algorithmto
handle both equdities and inequalities.

We aso introduce numeric ranges to encode relational expressons
like f(args)>5. Thisencoding replaces a litera numeric vaue in a
relational expression with a range name in an equality expression.
For instance, f(args)>5 would be transformed into f(args)=#gt5.
Next, we enhance the above constraint insertion algorithm to recog-
nize range names and to generate appropriate constraints for incom-
patible assignments. Consider the following two reationd
expressions with their range name substitutions and SAT varidde
assignments:

f(args)>5 = f(args)=#gt5 = vl
f(args)<0 => f(args)=#It0 = v2

Since the values in ranges #gt5 and #t0 are mutualy exclusive, we
insert the congtraint (-v1 | -v2) as previoudy described.

Certain expressions, however, cannot easily be assigned
propositional variables. For example, non-linear algebraic
expressions, such as f(args)"3=5, are not handled by our current
algebraic smplifier. A more fundamental problem occurs when we
try to assign variables to expressions containing multiple atoms, such
as Age(Hushand)<Age(Wife). If we assign this condition to vari-
able v1, when v1 is assigned a truth value in a model, we ill would

not know specific literal vaues for Age(Husband) and Age(Wife)
that would satisfy the model. Since these atoms can be interrelated
in many expressons, determining their values might require saving a
difficult constraint satisfaction problem. The same problem occurs
when the value of a nested atom is unknown, such as
Model Of(Car) in IsFast(Model Of(Car)).

To address these problems, we detect complex agebraic and multi-
ple atom expressions and then ask the user to provide specific
additiond facts. When these facts are provided, they are used to
samplify expressions. Otherwise, the analyss excludes threads that
contain the complex expressions. To date, and without deliberate
planning, ESN applications contain few or no complex expressons,
which might indicate that these expressions are atypical in such
aoplications.

Once complex expressions have been processed and congtraints
have been inserted, we convert ESN formulas to CNF. To avoid an
exponentia increase in the size of formulas, we use the conversion
agorithm specified by Giunchiglia and Sebastiani [8].

Steps 4 and 5 involve the straightforward trandation of CNF formu-
las to DIMACS format and the invocation of a SAT solver. An
anadysis run can invoke the SAT solver once for each formulaon
each valid path. Whenever possible, we cache intermediate results
to speed up processing. For example, since formulas are cumulative
in a thread, we append the current formula encoding to the previous
DIMACS encoding as we progress through a thread. We aso
cache formula conversion data between analyzer runs.

In current gpplications, SE achieves sub-second analysis execution
times on an IBM T40 laptop using the Java-based SATAJ solver
[18]. These executions often include 70 or more invocations of the
solver. The number of solver invocations is a most the number of
formulas on al valid paths, which is roughly proportiona to the size
of the KB.

4.2 How Static Analysisis Used

SE satic analysis calculates all possible models at each node and
link in a vaid path. These models are minimd in that only atoms
that appear at or before a location in a path are assigned truth
values at that location. If the last node in a path has at least one
mode, then the path is a reasoning thread Each modd at a
thread’ s terminal node defines a set of facts that dlows that thread
to be traversed. Paths that cannot reach their terminal nodes are
reported as dead ends, a type of ambivalence anomaly that might
indicate aKB error. In fact, we have detected and removed such
paths from our KB’ s using this analyss.

The SE anayzer optiondly generates coverage tests by writing new
profiles to disk. Each profile contains a set of facts that dlows at
least one thread identified during andysis to be traversed by the
reasoner. Taken as a group, the profiles exercise al threads. The
current generator uses a greedy agorithm to create the minimal
number of profiles for a given set of threads, but other algorithms
are possible. SE aso detects disconnected regionsin KB's using a
static analysis that does not rely on threads.

Our ongoing work focuses on different ways to characterize a KB.
Seady state andysis dlows a knowledge engineer to probe a KB
and understand its structure. Change impact analysis compares
the characteristics of aKB before and after changes are made.

We can think of these analyses in terms of the questions that they
answer about a KB. These questions can be categorized into three
levels. At the regex level, we ask questions about the reasoning
threads induced by one or more regexes. At the thread level, we
ask questions about node and link traversal. At the fact level, we
ask questions about the facts asserted at various points during
reasoning.

4.2.1 Seady Sate Analysis

Steady state analysis involves a single execution of the andyzer.
The reasoning graph returned by the analyzer contains the raw data
needed to answer the following questions.

Regex level quetions: What nodes are not included in any thread?
Do two or more regexes share any nodes? Are the threads induced
by aregex confined to a specific region of the KB? The answersto
these questions alow us to split a KB aong regex lines or to
eliminate unused nodes and links.

Thread level questions: How many ways are there to reach a node,
especialy an output node, for a given set of regexes? How many
threads start at a particular node? |s there a thread that connects
start node S to some other node N? What nodes dominate other
nodes, where node D dominates node N iff D is traversed before N
on every thread in which N appears? The answers to these
questions can help us predict reasoner behavior and validate the KB
domain model.

Fact level questions: What facts are asserted at a node across al
threads that traverse the node? What output nodes are reached
when fact F is asserted? Or when not F is asserted? Given fact F,
is there a fact F' such that F' is aways asserted when F is
asserted? The answers to these questions use the anayzer-
generated modelsto explain how facts guide reasoning.

4.2.2 Change Impact Analysis

Change impact anadysis involves two executions of the analyzer, one
that occurs before KB changes are made and one that occurs after.
The basic idea is to compare the results of the two executionsto
understand the affect KB changes have on system behavior. By
comparing the answers to the above questions both before and after
changes are made, we should be able to identify unintended conse-
quences caused by the changes. For example, we can determine if
the number of threads has changed; if the number of threads
passing through a particular node has changed; if the facts asserted
at a node have changed; or if the nodes and links in a thread have
changed. If any of these changes are unexpected, the knowledge
engineer can investigate further.

4.2.3 Satic Analysis Framework

The SE anayzer provides a wedth of information that knowledge
engineers can use to predict KBS behavior. The digtinguishing
feature of our analysis is its ability to abstractly evaluate all reason-
ing threads. The challenge is to dlow engineers to quickly access
the most useful data generated by that evaluation. For example, if
an engineer wants to verify that al nodes of a certain type are
output nodes, the output node ligt in the reasoning graph result can
be consulted. It would be more convenient, however, if this type of
deficiency anomaly were automatically checked and presented to
the engineer. Similaly, multiple threads that have the same start

and output nodes should be flagged as redundancy anomalies
without requiring a visud inspection of al threads.

Currently, SE provides the framework and raw andysis data by
which many aspects of a KBS can be verified and vadidated. Our
continuing work includes determining what information is most use-
ful and how to present it most effectively. Once the models have
been generated on each vaid path, the computations described in
Sections 4.2.1 and 4.2.2 are, with one exception, linear with regard
to the number of nodes, threads, facts, or models. Finding the facts
that are always asserted when fact F is asserted has complexity
O(n?), where n is the number of facts.

5. DYNAMIC ANALYS S

In SE, dynamic analysis involves the use of the reasoner during
KB authoring. In this section, we discuss two ways that reasoning
isintegrated with authoring:

Regression testing: We incorporate KB regression testing
in the SE authoring workbench (AWB) to provide the
knowledge engineer with immediate feedback after
changing a KB.

Reasoning driven authoring: The reasoning agorithm is
used to suggest possible extensions for selected reasoning
threads.

5.1 Regression Testing

The need for regression testing in software development is well
recognized [14]. The purpose of regression testing is to ensure that
exigting functiondity is not adversely affected when software is
modified. In KBS's, the management a KB becomes more
complex as the KB grows. Consider a product recommendation
system in which the number of possible product recommendations
increases over time. At some point, a knowledge engineer cannot
keep al recommendations for dl products in his head. In such
Stuations, how can a knowledge engineer know if a KB change is
safe to make?

To address this problem, we dlow knowledge engineers to under-
stand the effect a change in terms of itsimpact on reasoning results
for particular inputs. We use the term exemplars to refer to sets of
facts that represent scenarios that a KB is expected to handle. In
applications that recommend products, for example, an exemplar
would typicaly represent a class of customers. Each exemplar is
associated with alist of invariants: nodes that either must or must
not be activated when the reasoner runs with the exemplar’s input.
For example, in an SE banking application, we might want to ensure
that existing homeowners are never offered a mortgage that is
intended only for first-time homeowners. The exemplar for existing
homeowners would specify that nodes related to first-time
homeowners should not be activated.

Whenever the KB is modified usng the AWB, the reasoner
automatically runs all exemplars in the background. The difference
between the reasoning output and the expected output is displayed
dong with any information about violations of invariants. By
cdculating reasoning threads, the dynamic analysis subsystem
shows what nodes were newly activated as a result of a change and
why those nodes were activated. Thisis similar to the static change
impact analysis discussed in Section 4.2.2, except here we
automatically check for expected results during KB authoring.

5.2 Reasoning Driven Authoring

The AWB also uses reasoning threads to suggest how to extend an
ESN. This procedure, caled reasoning driven authoring, is
summarized as follows:

The author selects a node in a reasoning thread.

Using the node's prefix, defined as the sequence of node
and link types up to and induding the selected node, the
AWB compuites the link and node type combinations that
could legally follow the selected node.

The author selects the desired extension.

One can think of reasoning driven authoring as a kind of type-ahead
for ESN editing. To illustrate how this works, consider the
reasoning thread shown in Figure 2 in Section 3.1 that starts with
Stuation/Plans to hire employees and ends with
Product/employee medical insurance plan. This thread conforms
to the Recommend regex, which we reproduce below:

Stuation ((LeadsTo Stuation) | (Includes Stuation))*
Triggers Need (Includes Need)* ServedBy Product

If a knowledge engineer wants to extend the KB at the
Stuation/Has employees node, then the AWB would compute the
prefix: (Stuation/Plans to hire employees) (LeadsTo)
(Stuation/Has employees). The following link type/node type
pairs could be added after this prefix to conformwith the regex:

LeadsTo =» Stuation
Includes =» Situation
Triggers = Need

If an exemplar is used in combination with reasoning driven
authoring, then the author is assured that a newly added node will be
activated for at least for one set of inputs.

6. APPLICATIONS

Using SE, we have implemented several conversational expert
systems, which we define as expert systems that refine their results
by interacting with users. SE’s conversationa support is based on
the reasoner’ s dbility to report the unknown atoms that it encounters
during KB traversal. An unknown atom indicates that a vdid path
could be traversed further if one or more facts were known. As
mentioned in Section 3.3, the SE natural language processor can
generate questions from unknown atoms as well as explanations of
why a question is being asked. Applications can use these fadlities
to dicit more information from users. When provided with these
additional facts, the reasoner can explore more of the network.

Fundamentally, our conversational support depends on valid reason-
ing paths. These vdid paths dlow knowledge engineers to work at
the level of domain concepts and relations rather than at the level of
first-order logic. This high level approach facilitates communication
with users because it matches the level of abstraction that users
understand.

The most significant SE application to date has been an IBM sales
recommendation system. This pilot sales application was restricted
to one geographic area and one aspect of IBM’s service portfalio.
A group of roughly a dozen telemarketing representatives used the
SE system during sales calls while another group of the same size

served as a control group. Sales measurements taken over a three
month period indicated that the test group outperformed the control
group by over 400%. In addition, the test group increased their
sales by over 400% when compared to the same period in the
previous year. Though such alimited study only indicates potentia,
the results were enough to put the systeminto production and begin
alarger geographic rollout.

The sales system is a 2EE web application that calls the SE public
API. The gpplication’s KB contains 164 nodes, 330 links, 42
functions, and 2 regexes. The main regex generates 61 threads
with an average of 5.9 nodes and 1.1 formulas per thread. The
system performs well and has required little maintenance because
the domain knowledge is relatively stable. Other SE applications
include a system that recommends circuit board configurations for
an IBM hardware divison and a system that recommends smdl
business services offered by an international bank. This latter
system implements our largest KB with 627 nodes, 937 links, 166
functions, and 3 regexes. The main regex generates 21 threads
with an average of 8.4 nodes and 3.2 formulas per thread. Both
systems are prototype web applications.

Currently, we are building a pilot application for a telecommunica-
tions company to assist with customer cdl phone upgrades. We
expect this system to provide vauable feedback about the
effectiveness of our anadysis tools now that a significant portion of
those tools are in place. In the next section, we discuss what
applications make good candidates for SE.

7. DISCUSSION

A digtinguishing feature of KBS'sis their ability to determine control
flow a runtime. A sandard rule-based system, for example,
determines the next rule to fire based on the current state of
working memory and the rules in its KB. At development time,
knowledge engineers define if-then rules, but they do not explicitly
specify the order in which rules will fire. At runtime, after arule’s
antecedent is satisfied by the state of working memory, the reasoner
determines when the rule actudly fires.

This approach differs significantly from that used in traditiona
software where mog, if not al, control flow isexplicitly specified at
development time. KBS's often succeed where traditiona systems
have difficulty because KBS's do not need to prescribe execution
order in advance. This feature is especialy important for applica-
tions in dynamic domains that have many data interdependencies
and many special cases.

One drawback of the KBS approach, however, is that the number
of possible execution paths can grow exponentialy with the number
of rules. This growth adds indeterminism to a computation when
many more paths exist than can feasibly be executed. Also, the
additional computational complexity makes analyzing and predicting
KBS behavior more difficult.

SE trades away some KBS flexihility by specifying vaid reasoning
patterns in advance. In exchange, SE gains good performance in a
simplified runtime environment. SE static and dynamic anayses
depend on having a manageable number of execution paths in an
environment where facts are read-only. These characteristics lay
the foundation for the verification, validation, and authoring tech-
niques described in this paper.

SE is hardly unique in devising ways to reduce KBS complexity.
After seven years of development and use, the XCON rule-based
system mentioned in Section 2 was rewritten to reduce rule
complexity and to improve KB manageability [1]. Two key compo-
nents of the new system are algorithmic methods, which alow
execution sequences to be specified at development time, and
decision methods, which provide a way to order execution at
runtime based on current state. Both methods make control flow
more deterministic and, in that sense, SE takes a similar approach.

SE inhabits the design space between dynamic rule systems and
static decision trees by allowing the traversal of multiple reasoning
threads in a single reasoning session. Adding or modifying a regex
creates a new way to reason over the same semantic network.
Adding, deleting, or modifying nodes and links can aso change
reasoning. SE is dgnificantly more flexible than decision trees
because its execution paths are not hardcoded.

Thus, SE is wdl-suited for conversational expert systems that make
recommendations from afinite, well-defined set of choices that is
known in advance. In addition, SE is appropriate when reasoning
patterns are adso known in advance. Within these congtraints, SE
provides a highly interactive user experience.

On the other hand, SE is not appropriate for systems that optimize
or prioritize their results since SE has no way to compare recom-
mendations or enforce global constraints. SE evaluates formulas
usng an initial set of read-only facts, there is no concept of a
mutable working memory to which facts are added during
reasoning. In addition, SE is not agppropriate for complex configu-
ration problems like those addressed by XCON because
enumerating al possible configurations in advance is impractical.

Currently, we are exploring ways to increase the expressiveness of
SE without jeopardizing its essential smplicity. ldeas include adding
globa congraints; adding axioms that a theorem prover could use to
expand the set of known facts; and providing a way to order and
group generated questions. This last point is most important
because it provides applications with greater conversationa control.
The Conversation API shown in Figure 3 is where we are defining
this new conversational support. For the longer term, we are
considering ways to modularize KB's, ways to support collaborative
KB authoring, and the introduction of node and link subtypes.

8. RELATED WORK

The Preece/Shingha anomay classification scheme [17] discussed
in Section 2 is tailored to rule-based systems, but the anomalies it
defines are applicable to SE. In SE, dfficiency anomalies include
unreferenced functions, unused input facts, and incomplete thread
coverage of potentia output nodes. Dead ends are ambivalence
anomdies, threads with the same sart and end nodes are
redundancy anomalies. Revisiting a node without advancing in a
regex isacircularity anomaly.

KBS verification has been extensively studied over the past three
decades. Asearly as 1982, an oncologica decision support system,
ONCOCIN, provided domain independent rule checking as away to
find KB anomaies[20].

In KB-Reducer [7], Ginsberg uses whole-KB analysis to detect dl
potentid redundancies and contradictions (ambivalences). His
approach improves upon the par-wise rule anadysis used in

ONCOCIN, which cannot guarantee to find al anomdies. KB-
Reducer first calculates the dependency relationships between rules
and then it generates the environments that satisfy each rule. Inthe
worst case, the number of generated environments is exponentia in
the number of findings, which are literals used as input. Though
the worst case is unlikely in practice, in KB’swith 50, 150, and 370
rules, the number of generated environments was 700, 4000, and
35,000, respectively. The running time for the largest KB was 10
cpu hours on a late 1980's workstation. The use of reasoning
threads allows SE to avoid such complex computation.

The Comprehensive Verifier (COVER) [16] is split into three
subsystems: the integrity checker, the rule checker, and the rule-
chain checker. The author notes that the basic semantic checks
performed by the integrity checker, such as validating references
and vaue assignments, are most effective in detecting errors. In
SE, integrity checking is implemented as afundamental part of the
interactive authoring environment. Whenever changes are saved in
a KB, dl definitions, references, and value assgnments are auto-
matically checked. Similar to KB-Reducer, COVER's rule-chain
checker generates al possble environments when performing
redundancy and ambivalence verification. Like KB-Reducer, this
andysis has worse case exponential complexity. The verification
running time for a 540 rule KB on a Sun Sparc2 workstation was
3.5 hours. A later approach that preprocesses the KB reduced the
running time to 10 minutes [25]. Agan, by usng a smplified
process model, SE can verify KB’s approximately two orders of
magnitude quicker.

As mentioned in the Background and Discussion sections, XCON
[1] was a misson-critical, OPS5 rule system used to configure DEC
hardware and software. By 1988, the 59 XCON engineers and
developers had put in place a new software engineering
methodology, called RIME, to manage and maintain the system’'s
large, complex, and constantly changing KB. We already discussed
how, like in SE, new programming constructs were introduced to
give developers more control over the evduation order of rules.
RIME dso prescribes guidelines for rule creation that co-locates
rules smilar aong one or more dimersions, such as data
dependencies, actions triggered, etc. In addition, KB management
is aded by a rule classfication schema that allows for indexed
searches of the rule-base.

Both OWL-DL [19] and SE provide a language for constructing
semantic networks, and both provide agorithms for reasoning over
those networks. In an important respect, however, OWL-DL isless
powerful than SE. OWL-DL, like al standard description logics,
permits only reasoning over inst (membership) and isa (subclass)
links, while SE permits reasoning over any type of link as discussed
in Section 3.1. OWL-DL provides properties that can define more
general relationships, but reasoning is limited to membership and
subclass caculations.

SE dso permits a particular type of reasoning not expressible in
OWL-DL: that of composition. In SE, one can represent the
sentence, (forall x) (P(x,y) & Q(v,2 > R(x,2). In OWL-DL,
however, composition was deliberately omitted because it can make
a language intractable [2]. SE avoids that problem by using
reasoning threads. In every SE application that we have examined,
we have performed reasoning equivalen to the following:

Premise: Triggers(Situation, Need)
Premise: ServedBy(Need, Product)

Rule Triggers(Stuation, Need) & ServedBy(Need,
Product) = Recommendation(Situation, Product)

4. Inference: Recommendation(Situation, Product)

Composition is required to express therulein step 3, and this isnot
supported by OWL-DL.

In another important respect, however, OWL-DL is more powerful
than E. Like most standard description logics, reasoning in OWL-
DL includes efficient agorithms for subsumption (determining
whether one class is a subset of another) and classification
(determining where in a taxonomy a class belongs). There are no
such tools for SE, so authors must manually create taxonomies and
determine where classes belong in them.

We are exploring ways to combine the flexible, expressive reason-
ing of SE with the subsumption and classification agorithms of
OWL-DL. Our approach is to define SE node types, functions,
formulas, types, and regexes as OWL-DL classes. SE nodes would
be instances of node type classes and SE links would be properties
that relate those instances. We would use the SE reasoner to
traverse the OWL KB much as we do now, but we would also be
ableto use OWL-DL’srich classification scheme.

9. CONCLUSION

We have described how enhanced semartic networks maintain the
comprehensbility of a graphical knowledge representation while
providing a flexible, unambiguous way to reason over that knowl-
edge. Though not as powerful as generic rule systems, initid
applications indicate that SE is sufficiently powerful to build
conversationa expert systems where interactivity and fast response
times are paramount.

KB verification and validation are software engineering challenges
that impact the manageability, rdiability and, ultimady, the
precticality of KBS's. We have developed satic and dynamic
analyses based on reasoning threads. Our approach is feasible and
has good performance characteristics because of the smplified
reasoning model that ESN’s support. Our static analysis uses
threads to verify and validate KB structure. Our dynamic andysis
uses threads to guide the knowledge authoring process. Both
analyses provide ways to characterize the effects of KB changesto
knowledge engineers, which makes KB evolution easier and safer
to perform.

10. ACKNOWLEDGMENTS

We thank previous and current contributors to the Semantic Engine
project including, Karen Appleby, Leiguang Gong, and Moninder
Singh.

11. REFERENCES

[1] Barker, V. and O Connor, D. Expert System for Configuration
a Digital: XCON and Beyond. Communications of the ACM,
32(3), March 1989.

[2] Borgida, A. On the relative expressiveness of description
logics and predicate logics. Artificia Intelligence, 82 (1-2), pp
353-367, 1996.

(3]

[4]

(8]

(9]

[10]

[11]

[12]

[13]

Brachman, R. and Levesque, H. The tractability of
subsumption in frame-based description languages. Proc. Of
the 4™ Nat. Conf. on Artificial Intelligence (AAAI’ 84), 1984.

Chang, C., Combs, J. and Stachowitz, R. A Report on the
Expert Systems Validation Associate (EVA). Journal of
Expert Systems with Applications, 1(3), pp 217-230, 1990.

DIMACS, Satifiability Suggested Format, May 8, 1993.
Center for Discrete Mathematics and Theoretical
Computer Science, Rutgers University, Piscataway, New
Jersey.

Forgy, C. Rete: A Fast Algorithm for the Many Pattern/Many
Object Pattern Matching Problem. Artificial Intelligence, 19,
pp 17-37, 1982.

Ginsberg, A. Knowledge-Base Reduction: A new approach to
checking knowledge bases for inconsistency and redundancy.
Proc. of 7" National Conference on Artificial Intelligence
(AAAI’88), val. 2, pp 585-589.

Giunchiglia, E. and Sebastiani, R. Applying the Davis-Putnam
procedure to non-clausal formulas. Lecture Notesin
Computer Science, val. 1792, Springer-Verlag, 2000.

Minsky, M. A Framework for Representing Knowledge. The
Psychology of Human Vision, P. Winston (Ed.), pp. 211-277,
McGraw-Hill, 1975.

Morgenstern, L., Mudller, E., Riecken, D., Singh, M. and Gong,
L. Enhanced Semantic Networks: Hybrid Knowledge
Structures for Reasoning. |BM Research Report, RC23436,
Nov 16, 2004.

Morgenstern, L. and Riecken, D. SNAP: An action-based
ontology for e-commerce reasoning, Proceedings, Formal
Ontologies Meet Industry, Verona, Italy, 2005.

Nardi, D. and Brachman, R. An Introduction to Description
Logics. The Description Logic Handbook, edited by Baader,
F., Calvanese, D., McGuinness, D., Nardi, D. and Patel-
Schneider, P. Cambridge University Press, 2003.

O’ Keefe, R. and O’ Leary, D. Expert system verification and
vaidation: asurvey and tutorid. Artificia Intelligence Review,
7, pp 3-42, 1993.

[14] Onoma, A., Tsai, W., Poonawala, M. and Suganuma, H.
Regression testing in an industrial environment.
Communications of the ACM, 41(5), May 1998.

[15] Parnas, D. On the Criteriato be Used in Decomposing
Systems into Modules. Communications of the ACM, 15(12),
pp 1053-1058, December 1972.

[16] Preece, A. Validation of Knowledge-Based Systems: The
State-of -the-Art in North America. The Journal for the
Integrated Study of Artificial Intelligence Cognitive
Science and Applied Epistemology, 11(4), 1994.

[17] Preece, A. and Shinghal, R. Foundation and Application of
Knowledge Base Verification. International Journal of
Intelligent Systems, 9(8), pp 683-701, 1994.

[18] SATA4J, http://ww.sat4j.org.

[19] Smith, M., Wdlty, C. and McGuinness, D. OWL Web
Ontology Language Guide. W3C Recommendation, Feb 10,
2004. (http://www.w3.0rg/TR/2004/REC-owl-guide-
20040210/)

[20] Suwa, M., Scott, A. and Shortliffe, E. An approach to verifying
completeness and consistency in arule-based expert system.
Technical report CS-TR-82-922, Stanford University, 1982.

[21] Trowbridge, R. and Weingarten, S. Clinica Decision Support
Systems. Making Health Care Safer: A Critical Analysis of
Patient Safety Practices. Agency for Healthcare Research
and Qudlity, Pub. No. 01-E058, July 2001.

[22] Tsai, W., Vishnuvaijala, R. and Zhang, D. Verification and
Validation of Knowledge-Based Systems. |EEE Transactions
on Knowledge and Data Engineering, 11(1), January 1999.

[23] Weusten, M. Validation: the key concept in maintenance of
Lega KBS. Proc. Of the 4™ Internat. Conf. on Artificial
Intelligence and Law (ICAIL’93). Amsterdam, 1993.

[24] Woods, W. What's in alink: Foundations for semantic
networks. Representation and Understanding: Studiesin
Cognitive Science, edited by Bobrow, D. and Callins, A.,
Academic Press, 1975.

[25] Zlatareva, N. An Integrated Approach to Quality Assurance of
Expert System Knowledge Bases. Proc. of 2™ Internat.
Conf. on Information and Knowledge Management.
Washington, D.C., 1993.

