
Using Reasoning Threads in Enhanced Semantic
Networks

Richard Cardone, Rangachari Anand,
Xuan Liu, Leora Morgenstern, Erik Mueller,

Doug Riecken
IBM Watson Research

Hawthorne, New York, USA
{richcar, ranand, xuanliu, leora, etm, riecken}

@us.ibm.com

Calvin Lin
Department of Computer Sciences

University of Texas at Austin
Austin, Texas, USA

lin@cs.utexas.edu

ABSTRACT
A fundamental problem limiting the use of knowledge based
systems is the difficulty of managing and evolving knowledge over
time. As the amount of knowledge in a knowledge base (KB)
increases, the ability to predict how any change will affect system
behavior decreases. Moreover, because of the highly
interconnected nature of knowledge, KB complexity can grow
exponentially with the number of facts and rules. We address this
scalability problem by leveraging enhanced semantic networks
(ESN’s) and the idea of reasoning threads. We describe the
design, implementation, and capabilities of our ESN system, the
Semantic Engine, and show how to build useful knowledge base
systems with it. We also present novel static and dynamic analysis
techniques that aid in knowledge maintenance. Our static analysis
can detect anomalies, such as output states that can never be
reached, and can be used to compare the before and after effects
of a KB change. Our dynamic analysis provides immediate
feedback to guide knowledge engineers in an interactive authoring
environment.

Categories and Subject Descriptors
D.2.3 [Software Engineering]: Coding Tools and Techniques;
D.2.4. Software/Program Verification. I.2.4 [Artificial Intelli-
gence]: Knowledge Representation Formalisms and Methods

Keywords
Semantic network, knowledge base verification.

1. INTRODUCTION
Knowledge based systems (KBS’s) model human knowledge and
reasoning to address problems that are not easily solved using
deterministic algorithms. These systems usually apply some type of
search strategy to problems that can have zero or more solutions.
For example, a simplistic implementation of a production rule system
starts with a set of facts and sequentially determines if those facts

satisfy the antecedents of each of the system’s rules. When a rule
is satisfied, its consequent can add new facts to working memory,
which spawns a new iteration of the reasoning process. The order
in which the rules are visited and the facts are added constitute a
search strategy; the search space generated by such reasoning can
quickly become intractable as a knowledge base grows. Algorithms
such as RETE [6] and its successors have been developed to make
such processing more efficient.

The important point, however, is that this computational complexity
not only makes KBS reasoning difficult for computers to execute,
but it also makes it difficult for humans to understand. Indeed, a
crucial question in knowledge base (KB) management is, “How will
a particular change to a KB affect system behavior?” The answer
to this question depends on understanding how reasoning interacts
with knowledge and on the availability of tools that help developers
analyze that interaction.

KBS’s typically use some variant of first-order logic to reason about
their knowledge. The knowledge itself can have many possible
representations, including rule bases, semantic networks, frames [9],
and description logics [12]. As the representation becomes more
expressive, reasoning becomes computationally more complex, and
system behavior becomes harder for developers to predict [3].

We argue that a KBS can execute in a simplified, understandable
way and still do useful work. This paper introduces the Semantic
Engine (SE), a knowledge base system that uses enhanced
semantic networks (ESN’s) and a simplified approach to reasoning.
This simplified approach allows us to define reasoning threads,
which are the valid paths through the ESN that our reasoner
explores. By encapsulating knowledge in a localized representation,
reasoning threads allow our system to execute quickly and allow us
to perform analyses that facilitate knowledge creation and evolution.
We present a novel static analysis framework that detects
anomalies, interesting characteristics, and the effects of KB
changes. We use dynamic analysis to guide knowledge engineers
as they create and modify KB content. Developers use these
analysis tools to understand and verify the behavior of KBS’s.

This paper makes the following contributions:

• We show how ESN’s simplify KB reasoning.

• We present novel static analysis techniques for
verification of ESN systems.

• We present new dynamic analysis techniques that
interactively guide ESN evolution.

• We describe how to build useful expert systems with the
Semantic Engine.

The larger view is that KBS's face the same life-cycle challenges
as conventional software systems, as well as a few additional
challenges. Thus, one goal of this paper is to draw attention in the
software engineering community to the unique issues and
opportunities presented by KBS's.

Section 2 provides background on KBS software engineering issues.
Section 3 discusses SE’s main concepts and provides background
for the static and dynamic analyses sections, Sections 4 and 5,
respectively. Section 6 describes SE applications. Section 7
discusses SE’s strengths, weaknesses, and future work. We
conclude with related work and final remarks.

2. BACKGROUND
The key architectural components of a KBS are (1) a knowledge
base that contains a collection of related facts and rules, (2) a
reasoning engine (or reasoner) that uses the knowledge base to
draw conclusions and prove new facts, and (3) an application
program that invokes the reasoning engine for specific inquiries.
This tripartite architecture separates various concerns, which should
simplify system maintenance, comprehensibility, and evolution [15].
The modularity of the KBS architecture mirrors that of database
systems. Specifically, the KB’s role is to store knowledge; the
reasoner’s role is to execute logic over that stored knowledge; and
the application's role is to query the knowledge.

The analogy to database systems, however, breaks down when we
recognize that KBs do not contain passive facts so much as the
rules by which new facts can be derived, and that reasoners are not
so much retrieval engines as they are logic-based search engines.
Reasoners implement some form of mathematical logic in order to
prove or disprove conjectures in the knowledge domain. As the
number of rules in a KB increases, the interconnections between
those rules—between the consequents and antecedents of different
rules—can grow exponentially and can lead to search spaces too
large for reasoners to exhaustively inspect.

From a software engineering point of view, KBS development
presents all the life-cycle challenges of conventional software plus
unique challenges associated with KBs and reasoners. In particular,
extra consideration must be given to knowledge acquisition,
encoding, verification, and validation. In addition, the ability for
humans to understand and predict system behavior is important for
knowledge evolution. The remainder of this section discusses how
each of these considerations impacts the development of correct
and reliable KBS’s.

To populate a KB, knowledge is acquired from domain experts and
then encoded into the KB’s knowledge representation. The pitfalls
in acquiring domain knowledge from experts are well-documented
and include restrictions on the availability of experts, the difficulty
experts can have in explaining their knowledge, and the fact that
experts often disagree with each other [22]. Knowledge encoding
is also error prone; checking it can require time-consuming
coordination between domain experts and knowledge engineers.

Before a KBS is deployed, it is verified to determine if it executes
as specified and it is validated to determine if it meets user require-
ments. Verification can be thought of as a prerequisite of validation,
since a system that does not conform to specification is unlikely to
meet user requirements. For correct and efficient reasoning, a KB
needs to be consistent, complete, and devoid of circularities and
redundancies. These terms have different meanings for different
knowledge representations, but, in general, a KB can be statically
analyzed to verify its structure and detect anomalies. Anomalies
do not necessarily indicate KB errors, but instead report to the
knowledge engineer content that might warrant closer examination.

Anomaly detection is either domain dependent or independent.
Domain dependent approaches use metadata to constrain KB con-
tent. Since this metadata also needs to be verified and maintained, it
can complicate the original problem of KB verification [13].
Domain independent verification first translates a KB into a
representation suited to analysis, such as a graph, and then tests for
various properties. These properties can be as simple as detecting
rules that can never fire in a rule-base or detecting disconnected
regions in a semantic network. Anomalies have been classified in
several studies [4][13][16]; here is a summary of the
Preece/Shinghal formal classification scheme [17]:

Redundancy – when rules are extraneous, subsumed, or unusable

Ambivalence – when valid input leads to contradictory results

Circularity – when reasoning from a rule leads back to that rule

Deficiency – when valid input is not used or leads to no output

Whether the above conditions represent actual KB flaws often
depends on the reasoning procedure used. For example, the SE
reasoner handles cases of circularity without generating a runtime
error. Thus, the detection of circularity during analysis would only
be informational in SE.

KB validation is concerned with the reliable generation of
appropriate output for every possible input. A fundamental issue is
that directly testing every set of input values is impractical in all but
the simplest systems. Another problem is that KBS’s are used in
domains where there can be more than one acceptable result and
part of the problem is choosing among possible results. For
instance, an expert system might be considered reliable if it always
agrees with experts in simple cases and if it agrees with at least
some experts in complex cases. A common theme in KB validation
is finding small yet representative sets of test cases that allow one
to confidently predict system behavior [13].

KBS’s typically address problems that involve competing goals,
understanding context, or using common sense—in a word,
problems that demand judgment. For example, KB technology is
used to diagnose medical conditions [21], render legal advice [23],
and configure complicated systems [1]. In general, KB’s need to
change as quickly the domains they model. But when a KB is
modified, how can one guarantee that the KB is still consistent, that
the quality of its output hasn’t deteriorated, or that the system will
behave as intended? Consider the problem of validating changes to
the XCON system, which by 1988 contained over 10,000 rules for
configuring DEC computers. Then consider that approximately
40% of the rules were changed, added, or deleted each year [1].

The ability to safely evolve a KB is crucial in justifying a KBS
investment.

Our main motivation is to increase the use of KBS’s by simplifying
KB management. In particular, we want to build expert systems
using a knowledge representation that is comprehensible to non-
specialists. Our approach uses semantic networks that can be
graphically displayed and that behave operationally like decision
trees or even linear reasoning threads. This simple operational
model is more accessible to non-technical domain experts [23] and
can improve knowledge acquisition and encoding. Our simplified
approach should also make verification and validation easier, as well
as benefit explanation generation and other natural language
processing that expert systems often perform.

3. THE SEMANTIC ENGINE (SE)
3.1 Enhanced Semantic Networks
A semantic network (SN) is a directed graph that consists of nodes
that represent concepts and edges that represent relations between
concepts. SN’s are appealing because their graphical structure can
help us visualize reasoning. Intuitively, paths in an SN should
correspond to reasoning chains. Upon closer examination, however,
arbitrary paths in a SN do not generally correspond to valid
reasoning [24].

Figure 1: Only some SN paths correspond to valid reasoning

Consider Figure 1, which depicts a SN that represents knowledge
about the animal kingdom and Bill’s visit to the Bronx Zoo. We can
assign meaning to many paths. For example , the path from Penny to
mammal intuitively means that “Penny is a mammal.” Many paths,
however, do not have an obvious meaning: What can we conclude
about the path from Bill to plant? That Bill is a plant? That Bill
eats some plants, all plants, or only plants? In other cases, it’s not
clear how we draw a correct conclusion: When traversing the path
from Bill to New York, how can we conclude that Bill is located in
New York? In general, arbitrary SN’s have no clear semantics and
no clear specification of valid reasoning.

One way to force all paths in a SN to be meaningful is to limit the
expressivity of the network. For example, inheritance networks
build meaningful taxonomies by limiting their relations to subtype
(isa) and membership (inst). This approach is restrictive, however,

since one can only reason about whether something is a member of
a class or whether one class is a subset of another.

In SE, we propose a solution that lies between loosely defined
reasoning and limited, single-mode reasoning. The key idea is to
recognize that there are specific patterns in a SN that correspond to
valid reasoning. We identify valid reasoning paths in a SN by
determining whether a path fits any of a predetermined set of
reasoning patterns. We define valid reasoning in a SN by means of
these fixed patterns, which we encode as regular expressions. The
resulting enhanced semantic network (ESN) extends the
expressiveness of inheritance networks while maintaining a precise
definition of valid reasoning.

An ESN is a semantic network in which each node is specified with
a node type and each link (edge) with a link type. Node types and
link types define two disjoint, finite sets in an ESN. Each ESN is
also associated with a list of valid reasoning patterns, which are
specified as regular expressions (regexes) composed using node
types and link types.

Figure 2: Small business banking ESN

Figure 2 shows an ESN fragment that models banking services for
small businesses. Each node is labeled with its type and its name;
each link is labeled with its type. The regex below, which we will
call the Recommend regex, defines reasoning paths that begin at
Situation nodes and end at Product nodes.

Situation ((LeadsTo Situation) | (Includes Situation))*
Triggers Need (Includes Need)* ServedBy Product

In general, a regex starts with one or more node types and is fol-
lowed by zero or more link/node type sequences. Any number of
regexes can be defined on an ESN. For example, the regex,
Product -ServedBy Need, can be used to discover the immediate
Needs served by a Product (the minus sign specifies backwards
traversal on ServedBy links).

To further restrict traversal, ESN’s also support formulas on nodes
and links. For instance, the Recommend regex above generates
nine paths, one that connects each Situation to each Product. If the
following formula appears on the “Employee medical insurance
plan” node, then traversal would only proceed to that node for
businesses with more than five employees.

NumberOfEmployees(Customer) > 5

ESN formulas are formulas in the first-order logic sense: Boolean
expressions that contain arithmetic, relational, and logical operators.
The supported data types are string, number, Boolean, and user-
defined enumerations. The value of an enumerated type can be
existentially or universally quantified in a formula. Formulas can
also reference strongly typed, user-defined functions. These
functions take zero or more parameters and return a supported type.
Functions that return Boolean can be thought of as predicates in
first order logic. In the formula above, the function
NumberOfEmployees takes a parameter of type Person (assume
Customer is an enumerated value of Person) and returns a number.

3.2 SE Process Model
In this section, we discuss how SE reasons with ESN’s. A formal
treatment of ESN reasoning demonstrates that SE reasoning is
equivalent to a subset of first-order logic [10].

On input, the SE reasoner takes an ESN, a regex, an optional start
node list, and an optional profile. The profile defines a set of read-
only facts that are used to evaluate node and link formulas. These
facts are specified as assignments to grounded functions (i.e.,
functions with no variables). For example, the following fact would
cause the formula presented in the last section to evaluate to true:
NumberOfEmployees(Customer)=20.

Start nodes are nodes where the reasoner begins regex matching.
If start nodes are provided as input, they are the only nodes used to
begin matching. Otherwise, the reasoner calculates the set of start
nodes before proceeding. Start nodes are calculated using a
specially designated formula, the start condition formula (or
sformula), which can be defined on nodes. When generating the
start node set, the reasoner uses profile facts to evaluate all
sformulas in the ESN. The nodes whose sformulas evaluate to true
are added to the start node set.

During reasoning, the SE reasoner searches for all valid paths in
the ESN. Valid paths are those that match a regex. Regex match-
ing corresponds to constructing a string from a path’s node and link
types and determining if the regex accepts that string. Paths begin
at start nodes; each time a regex match occurs, the reasoner checks
for an optional precondition formula (pformula) before advancing.
These formulas, introduced in the last section, must evaluate to true
for traversal to continue along a path. Reasoning ends when
traversal has been attempted on all valid paths.

On output, the SE reasoner reports results in a reasoning graph.
Included in the reasoning graph are the output nodes, which
represent accepting states in the regex; the reasoning threads,
which are valid paths whose formulas all evaluate to true; and a list
of unknown atoms , which are grounded functions1 whose values
are not known. During traversal, if the reasoner encounters a
function whose value is unknown, the reasoner adds the function to
the unknown atoms list and aborts the reasoning path.

SE reasoning reduces computational complexity and increases over-
all comprehensibility in several ways. First, by specifying valid
reasoning, regexes eliminate most network paths from considera-

1 To ground a formula, existentially quantified variables are replaced with a

disjunction of enumerated values and universally quantified variables
are replaced with a conjunction of enumerated values.

tion. Also, SE profiles act as read-only working memory during
reasoning, so the order in which paths are processed does not affect
the final reasoning result. Moreover, reasoning thread traversal is
idempotent and independent of other traversals.

An ESN corresponds to a set of well-formed formulas in first-order
logic and SE reasoning corresponds to simple theorem proving over
those formulas [10]. Indeed, ESN’s provide a remarkably compact
representation for rules. One can view any legal path in an ESN as
being analogous to a rule in a rule-based system, and a small ESN
can yield a large number of legal paths. This compact
representation is one of the reasons KB’s have been relatively small
in the applications that we have written (see Section 6).
Compactness is also due in part to a concise and powerful ontology
that we have developed [11].

SE reasoning also provides expert systems with a framework for a
conversational interaction with users. The reasoner delivers its
conclusions or recommendations as output nodes. The reasoner
also indicates that reasoning could be extended if more information
were known by returning unknown atoms. An application can use
these unknown atoms to query users for more information and then
invoke the reasoner with an updated profile. SE provides a natural
language processor that generates English questions from unknown
atoms and generates explanations from reasoning threads. This
language support improves user experience with little effort from
application developers.

3.3 SE Architecture
Figure 3 below shows the software stack for SE applications and
for the SE authoring environment. The SE Authoring Workbench
consists of editors, which include graphical and text-based tools, and
analyzers, which we discuss in detail in the following sections. The
authoring modules interact directly with the KB and with the SE
Runtime.

Figure 3: SE Runtime and Design-Time Architecture

The main components of the SE Runtime environment are a
reasoning engine and a natural language processor (NLP). Both
components interface with the KB. We described the reasoner in
the previous section. The NLP dynamically generates explanations
from reasoning threads, questions from unknown atoms, and
question justifications from unknown atoms and partial paths. The
NLP uses various heuristics and tuning parameters to generate
concise, non-repetitive, natural sounding, English text that can be
presented to users by an application. We do not discuss language
processing in depth in this paper.

The SE API provides the public interface to the SE Runtime.
Applications use the SE API to invoke the reasoner and the lan-
guage processor. The Conversation API supports conversational

control flow in interactive applications. The main function of this
layer is to support one or more concurrent dialogues between an
expert system and its users. Each dialogue consists of currently
known facts, questions posed by the system, and recommendations
offered by the system on various user-selected topics.

SE is implemented in Java under Eclipse. The authoring environ-
ment is integrated into the Eclipse workbench as plug-ins; the SE
runtime code executes under Eclipse or as standalone Java code.
All the above components have been implemented, though the
Conversation API design is still evolving. In Section 6, we discuss
our experience building several prototype systems and one
production system using SE.

4. STATIC ANALYSIS
SE uses both declarative and procedural information to statically
analyze a KB. The declarative information consists of KB nodes,
links, formulas, functions, regexes, and types. The procedural
information consists of valid paths calculated by the reasoner. In
practice, we can usually enumerate all valid paths during analysis
because of the filtering efficiency of regexes. For example, in an
ESN application that contains over 600 nodes and 900 links, the
main regex generates only 21 valid paths. This ability to statically
inspect all relevant paths means that we can perform analyses that
would not be practical in other systems.

4.1 How Static Analysis Works
The basic idea behind our analysis is to calculate the facts required
to traverse any node or link in any reasoning thread. This idea,
inspired by compiler dataflow analysis, provides the raw data used
to characterize KB structure and to find KB anomalies. We begin
by describing how such data are calculated.

Let P be a valid path induced by a regex in some KB and let A be a
node or link in P. We define a model, M(A), to be a set of facts
that satisfies the precondition formula at A, the precondition formu-
las for all nodes and links that precede A in P, and the start condition
of P's start node. A fact is a ground atom of the form,
<functionSymbol>(groundedArgs)=<constant>, such as
Age(Man)=33, IsMarried(Man)=True, or Spouse(Man)='Mary'.
When the reasoner traverses a path, empty precondition formulas
are implicitly satisfied; otherwise, the reasoner uses facts to
determine if it can proceed. This traversal can be thought of as
computing a model at each point in the path.

We statically calculate models by beginning at a start node and as-
suming whatever facts are necessary for traversal to continue on
the path. We convert our calculation into a formula satisfiability
(SAT) problem by encoding SE formulas as formulas of Boolean
variables in propositional calculus. Since A can have zero or more
models, we can only say what possible sets of facts could be in
effect at runtime. If A has no models, then we know the reasoner
cannot traverse that point in the path.

Given (i) a KB, (ii) one or more regexes, (iii) an optional input node
set, and (iv) an optional initial fact set, our goal is to statically
calculate all models at all points in the valid paths. Our algorithm
performs the following steps:

1. Generate all valid paths that conform to the regexes.

2. Prepare formulas for CNF conversion.

3. Generate constraints and complete CNF conversion.

4. Encode CNF formulas into DIMACS format.

5. Use a SAT solver to find all models.

Step 1 generates valid paths by running the reasoner while ignoring
all formulas. If multiple regexes are specified, we invoke the
reasoner with each regex and accumulate the resulting paths. For
this discussion, we assume the common case of a single regex.

Step 2 prepares formulas for conversion to conjunctive normal form
(CNF: conjunction of disjunctions) and, ultimately, to the standard
DIMACS [5] format for SAT solver input. For each formula on a
path, we perform algebraic and syntactic simplification; we ground
quantified formulas; we substitute values from initial facts where
possible; and we replace cardinality, implication, and equivalence
expressions with conjunctive and disjunctive expressions. Formulas
can only be quantified over enumerated types, so we have the
closed world assumption that always permits grounding. Cardinality
expressions, which have the form min {f1, f2,…, fn} max, specify a
minimum and maximum number of Boolean formulas, fi, 0 < i = n,
that must evaluate to true. Cardinality expressions are converted to
a disjunction of conjunctions.

Step 3 preserves semantics when converting ESN formulas into
propositional formulas. Conversions involving (1) equality expres-
sions with literals, (2) range expressions with literals, and (3)
multiple atom expressions require special consideration.

Consider the equality expression f(args)=L1, where f(args) is a
ground atom and L1 is a literal value. We can represent f(args)=L1

with the propositional variable v1 and represent the negated expres-
sion, f(args)?L1, with -v1. Similarly, variable v2 can represent
f(args)=L2, L1?L2. If both equality expressions appear in formulas,
then we insert the clause (-v1 | -v2) wherever v1 appears to
indicate that v1 implies -v2. We do a similar insertion wherever v2
appears. These insertions preserve the original ESN semantics
where f(args) can equal exactly one value L1, L2, …, Ln, where
Li?Lj if i ? j. We generalize this constraint insertion algorithm to
handle both equalities and inequalities.

We also introduce numeric ranges to encode relational expressions
like f(args)>5 . This encoding replaces a literal numeric value in a
relational expression with a range name in an equality expression.
For instance, f(args)>5 would be transformed into f(args)=#gt5.
Next, we enhance the above constraint insertion algorithm to recog-
nize range names and to generate appropriate constraints for incom-
patible assignments. Consider the following two relational
expressions with their range name substitutions and SAT variable
assignments:

f(args)>5 è f(args)=#gt5 è v1

f(args)<0 è f(args)=#lt0 è v2

Since the values in ranges #gt5 and #lt0 are mutually exclusive, we
insert the constraint (-v1 | -v2) as previously described.

Certain expressions, however, cannot easily be assigned
propositional variables. For example, non-linear algebraic
expressions, such as f(args)^3=5, are not handled by our current
algebraic simplifier. A more fundamental problem occurs when we
try to assign variables to expressions containing multiple atoms, such
as Age(Husband)<Age(Wife). If we assign this condition to vari-
able v1, when v1 is assigned a truth value in a model, we still would

not know specific literal values for Age(Husband) and Age(Wife)
that would satisfy the model. Since these atoms can be interrelated
in many expressions, determining their values might require solving a
difficult constraint satisfaction problem. The same problem occurs
when the value of a nested atom is unknown, such as
ModelOf(Car) in IsFast(ModelOf(Car)).

To address these problems, we detect complex algebraic and multi-
ple atom expressions and then ask the user to provide specific
additional facts. When these facts are provided, they are used to
simplify expressions. Otherwise, the analysis excludes threads that
contain the complex expressions. To date, and without deliberate
planning, ESN applications contain few or no complex expressions,
which might indicate that these expressions are atypical in such
applications.

Once complex expressions have been processed and constraints
have been inserted, we convert ESN formulas to CNF. To avoid an
exponential increase in the size of formulas, we use the conversion
algorithm specified by Giunchiglia and Sebastiani [8].

Steps 4 and 5 involve the straightforward translation of CNF formu-
las to DIMACS format and the invocation of a SAT solver. An
analysis run can invoke the SAT solver once for each formula on
each valid path. Whenever possible, we cache intermediate results
to speed up processing. For example, since formulas are cumulative
in a thread, we append the current formula encoding to the previous
DIMACS encoding as we progress through a thread. We also
cache formula conversion data between analyzer runs.

In current applications, SE achieves sub-second analysis execution
times on an IBM T40 laptop using the Java-based SAT4J solver
[18]. These executions often include 70 or more invocations of the
solver. The number of solver invocations is at most the number of
formulas on all valid paths, which is roughly proportional to the size
of the KB.

4.2 How Static Analysis is Used
SE static analysis calculates all possible models at each node and
link in a valid path. These models are minimal in that only atoms
that appear at or before a location in a path are assigned truth
values at that location. If the last node in a path has at least one
model, then the path is a reasoning thread. Each model at a
thread’s terminal node defines a set of facts that allows that thread
to be traversed. Paths that cannot reach their terminal nodes are
reported as dead ends, a type of ambivalence anomaly that might
indicate a KB error. In fact, we have detected and removed such
paths from our KB’s using this analysis.

The SE analyzer optionally generates coverage tests by writing new
profiles to disk. Each profile contains a set of facts that allows at
least one thread identified during analysis to be traversed by the
reasoner. Taken as a group, the profiles exercise all threads. The
current generator uses a greedy algorithm to create the minimal
number of profiles for a given set of threads, but other algorithms
are possible. SE also detects disconnected regions in KB’s using a
static analysis that does not rely on threads.

Our ongoing work focuses on different ways to characterize a KB.
Steady state analysis allows a knowledge engineer to probe a KB
and understand its structure. Change impact analysis compares
the characteristics of a KB before and after changes are made.

We can think of these analyses in terms of the questions that they
answer about a KB. These questions can be categorized into three
levels. At the regex level, we ask questions about the reasoning
threads induced by one or more regexes. At the thread level, we
ask questions about node and link traversal. At the fact level, we
ask questions about the facts asserted at various points during
reasoning.

4.2.1 Steady State Analysis
Steady state analysis involves a single execution of the analyzer.
The reasoning graph returned by the analyzer contains the raw data
needed to answer the following questions.

Regex level questions: What nodes are not included in any thread?
Do two or more regexes share any nodes? Are the threads induced
by a regex confined to a specific region of the KB? The answers to
these questions allow us to split a KB along regex lines or to
eliminate unused nodes and links.

Thread level questions: How many ways are there to reach a node,
especially an output node, for a given set of regexes? How many
threads start at a particular node? Is there a thread that connects
start node S to some other node N? What nodes dominate other
nodes, where node D dominates node N iff D is traversed before N
on every thread in which N appears? The answers to these
questions can help us predict reasoner behavior and validate the KB
domain model.

Fact level questions: What facts are asserted at a node across all
threads that traverse the node? What output nodes are reached
when fact F is asserted? Or when not F is asserted? Given fact F,
is there a fact F' such that F' is always asserted when F is
asserted? The answers to these questions use the analyzer-
generated models to explain how facts guide reasoning.

4.2.2 Change Impact Analysis
Change impact analysis involves two executions of the analyzer, one
that occurs before KB changes are made and one that occurs after.
The basic idea is to compare the results of the two executions to
understand the affect KB changes have on system behavior. By
comparing the answers to the above questions both before and after
changes are made, we should be able to identify unintended conse-
quences caused by the changes. For example, we can determine if
the number of threads has changed; if the number of threads
passing through a particular node has changed; if the facts asserted
at a node have changed; or if the nodes and links in a thread have
changed. If any of these changes are unexpected, the knowledge
engineer can investigate further.

4.2.3 Static Analysis Framework
The SE analyzer provides a wealth of information that knowledge
engineers can use to predict KBS behavior. The distinguishing
feature of our analysis is its ability to abstractly evaluate all reason-
ing threads. The challenge is to allow engineers to quickly access
the most useful data generated by that evaluation. For example, if
an engineer wants to verify that all nodes of a certain type are
output nodes, the output node list in the reasoning graph result can
be consulted. It would be more convenient, however, if this type of
deficiency anomaly were automatically checked and presented to
the engineer. Similarly, multiple threads that have the same start

and output nodes should be flagged as redundancy anomalies
without requiring a visual inspection of all threads.

Currently, SE provides the framework and raw analysis data by
which many aspects of a KBS can be verified and validated. Our
continuing work includes determining what information is most use-
ful and how to present it most effectively. Once the models have
been generated on each valid path, the computations described in
Sections 4.2.1 and 4.2.2 are, with one exception, linear with regard
to the number of nodes, threads, facts, or models. Finding the facts
that are always asserted when fact F is asserted has complexity
O(n2), where n is the number of facts.

5. DYNAMIC ANALYSIS
In SE, dynamic analysis involves the use of the reasoner during
KB authoring. In this section, we discuss two ways that reasoning
is integrated with authoring:

• Regression testing: We incorporate KB regression testing
in the SE authoring workbench (AWB) to provide the
knowledge engineer with immediate feedback after
changing a KB.

• Reasoning driven authoring: The reasoning algorithm is
used to suggest possible extensions for selected reasoning
threads.

5.1 Regression Testing
The need for regression testing in software development is well
recognized [14]. The purpose of regression testing is to ensure that
existing functionality is not adversely affected when software is
modified. In KBS’s, the management a KB becomes more
complex as the KB grows. Consider a product recommendation
system in which the number of possible product recommendations
increases over time. At some point, a knowledge engineer cannot
keep all recommendations for all products in his head. In such
situations, how can a knowledge engineer know if a KB change is
safe to make?

To address this problem, we allow knowledge engineers to under-
stand the effect a change in terms of its impact on reasoning results
for particular inputs. We use the term exemplars to refer to sets of
facts that represent scenarios that a KB is expected to handle. In
applications that recommend products, for example, an exemplar
would typically represent a class of customers. Each exemplar is
associated with a list of invariants: nodes that either must or must
not be activated when the reasoner runs with the exemplar’s input.
For example, in an SE banking application, we might want to ensure
that existing homeowners are never offered a mortgage that is
intended only for first-time homeowners. The exemplar for existing
homeowners would specify that nodes related to first-time
homeowners should not be activated.

Whenever the KB is modified using the AWB, the reasoner
automatically runs all exemplars in the background. The difference
between the reasoning output and the expected output is displayed
along with any information about violations of invariants. By
calculating reasoning threads, the dynamic analysis subsystem
shows what nodes were newly activated as a result of a change and
why those nodes were activated. This is similar to the static change
impact analysis discussed in Section 4.2.2, except here we
automatically check for expected results during KB authoring.

5.2 Reasoning Driven Authoring
The AWB also uses reasoning threads to suggest how to extend an
ESN. This procedure, called reasoning driven authoring, is
summarized as follows:

• The author selects a node in a reasoning thread.

• Using the node’s prefix , defined as the sequence of node
and link types up to and including the selected node, the
AWB computes the link and node type combinations that
could legally follow the selected node.

• The author selects the desired extension.

One can think of reasoning driven authoring as a kind of type-ahead
for ESN editing. To illustrate how this works, consider the
reasoning thread shown in Figure 2 in Section 3.1 that starts with
Situation/Plans to hire employees and ends with
Product/employee medical insurance plan. This thread conforms
to the Recommend regex, which we reproduce below:

Situation ((LeadsTo Situation) | (Includes Situation))*
Triggers Need (Includes Need)* ServedBy Product

If a knowledge engineer wants to extend the KB at the
Situation/Has employees node, then the AWB would compute the
prefix: (Situation/Plans to hire employees) (LeadsTo)
(Situation/Has employees). The following link type/node type
pairs could be added after this prefix to conform with the regex:

 LeadsTo è Situation

 Includes è Situation

 Triggers è Need

If an exemplar is used in combination with reasoning driven
authoring, then the author is assured that a newly added node will be
activated for at least for one set of inputs.

6. APPLICATIONS
Using SE, we have implemented several conversational expert
systems, which we define as expert systems that refine their results
by interacting with users. SE’s conversational support is based on
the reasoner’s ability to report the unknown atoms that it encounters
during KB traversal. An unknown atom indicates that a valid path
could be traversed further if one or more facts were known. As
mentioned in Section 3.3, the SE natural language processor can
generate questions from unknown atoms as well as explanations of
why a question is being asked. Applications can use these facilities
to elicit more information from users. When provided with these
additional facts, the reasoner can explore more of the network.

Fundamentally, our conversational support depends on valid reason-
ing paths. These valid paths allow knowledge engineers to work at
the level of domain concepts and relations rather than at the level of
first-order logic. This high level approach facilitates communication
with users because it matches the level of abstraction that users
understand.

The most significant SE application to date has been an IBM sales
recommendation system. This pilot sales application was restricted
to one geographic area and one aspect of IBM’s service portfolio.
A group of roughly a dozen telemarketing representatives used the
SE system during sales calls while another group of the same size

served as a control group. Sales measurements taken over a three
month period indicated that the test group outperformed the control
group by over 400%. In addition, the test group increased their
sales by over 400% when compared to the same period in the
previous year. Though such a limited study only indicates potential,
the results were enough to put the system into production and begin
a larger geographic rollout.

The sales system is a J2EE web application that calls the SE public
API. The application’s KB contains 164 nodes, 330 links, 42
functions, and 2 regexes. The main regex generates 61 threads
with an average of 5.9 nodes and 1.1 formulas per thread. The
system performs well and has required little maintenance because
the domain knowledge is relatively stable . Other SE applications
include a system that recommends circuit board configurations for
an IBM hardware division and a system that recommends small
business services offered by an international bank. This latter
system implements our largest KB with 627 nodes, 937 links, 166
functions, and 3 regexes. The main regex generates 21 threads
with an average of 8.4 nodes and 3.2 formulas per thread. Both
systems are prototype web applications.

Currently, we are building a pilot application for a telecommunica-
tions company to assist with customer cell phone upgrades. We
expect this system to provide valuable feedback about the
effectiveness of our analysis tools now that a significant portion of
those tools are in place. In the next section, we discuss what
applications make good candidates for SE.

7. DISCUSSION
A distinguishing feature of KBS’s is their ability to determine control
flow at runtime. A standard rule -based system, for example,
determines the next rule to fire based on the current state of
working memory and the rules in its KB. At development time,
knowledge engineers define if-then rules, but they do not explicitly
specify the order in which rules will fire. At runtime, after a rule’s
antecedent is satisfied by the state of working memory, the reasoner
determines when the rule actually fires.

This approach differs significantly from that used in traditional
software where most, if not all, control flow is explicitly specified at
development time. KBS’s often succeed where traditional systems
have difficulty because KBS’s do not need to prescribe execution
order in advance. This feature is especially important for applica-
tions in dynamic domains that have many data interdependencies
and many special cases.

One drawback of the KBS approach, however, is that the number
of possible execution paths can grow exponentially with the number
of rules. This growth adds indeterminism to a computation when
many more paths exist than can feasibly be executed. Also, the
additional computational complexity makes analyzing and predicting
KBS behavior more difficult.

SE trades away some KBS flexibility by specifying valid reasoning
patterns in advance. In exchange, SE gains good performance in a
simplified runtime environment. SE static and dynamic analyses
depend on having a manageable number of execution paths in an
environment where facts are read-only. These characteristics lay
the foundation for the verification, validation, and authoring tech-
niques described in this paper.

SE is hardly unique in devising ways to reduce KBS complexity.
After seven years of development and use, the XCON rule-based
system mentioned in Section 2 was rewritten to reduce rule
complexity and to improve KB manageability [1]. Two key compo-
nents of the new system are algorithmic methods, which allow
execution sequences to be specified at development time, and
decision methods, which provide a way to order execution at
runtime based on current state. Both methods make control flow
more deterministic and, in that sense, SE takes a similar approach.

SE inhabits the design space between dynamic rule systems and
static decision trees by allowing the traversal of multiple reasoning
threads in a single reasoning session. Adding or modifying a regex
creates a new way to reason over the same semantic network.
Adding, deleting, or modifying nodes and links can also change
reasoning. SE is significantly more flexible than decision trees
because its execution paths are not hardcoded.

Thus, SE is well-suited for conversational expert systems that make
recommendations from a finite, well-defined set of choices that is
known in advance. In addition, SE is appropriate when reasoning
patterns are also known in advance. Within these constraints, SE
provides a highly interactive user experience.

On the other hand, SE is not appropriate for systems that optimize
or prioritize their results since SE has no way to compare recom-
mendations or enforce global constraints. SE evaluates formulas
using an initial set of read-only facts; there is no concept of a
mutable working memory to which facts are added during
reasoning. In addition, SE is not appropriate for complex configu-
ration problems like those addressed by XCON because
enumerating all possible configurations in advance is impractical.

Currently, we are exploring ways to increase the expressiveness of
SE without jeopardizing its essential simplicity. Ideas include adding
global constraints; adding axioms that a theorem prover could use to
expand the set of known facts; and providing a way to order and
group generated questions. This last point is most important
because it provides applications with greater conversational control.
The Conversation API shown in Figure 3 is where we are defining
this new conversational support. For the longer term, we are
considering ways to modularize KB’s, ways to support collaborative
KB authoring, and the introduction of node and link subtypes.

8. RELATED WORK
The Preece/Shinghal anomaly classification scheme [17] discussed
in Section 2 is tailored to rule-based systems, but the anomalies it
defines are applicable to SE. In SE, deficiency anomalies include
unreferenced functions, unused input facts, and incomplete thread
coverage of potential output nodes. Dead ends are ambivalence
anomalies; threads with the same start and end nodes are
redundancy anomalies. Revisiting a node without advancing in a
regex is a circularity anomaly.

KBS verification has been extensively studied over the past three
decades. As early as 1982, an oncological decision support system,
ONCOCIN, provided domain independent rule checking as a way to
find KB anomalies [20].

In KB-Reducer [7], Ginsberg uses whole-KB analysis to detect all
potential redundancies and contradictions (ambivalences). His
approach improves upon the pair-wise rule analysis used in

ONCOCIN, which cannot guarantee to find all anomalies. KB-
Reducer first calculates the dependency relationships between rules
and then it generates the environments that satisfy each rule. In the
worst case, the number of generated environments is exponential in
the number of findings, which are literals used as input. Though
the worst case is unlikely in practice, in KB’s with 50, 150, and 370
rules, the number of generated environments was 700, 4000, and
35,000, respectively. The running time for the largest KB was 10
cpu hours on a late 1980’s workstation. The use of reasoning
threads allows SE to avoid such complex computation.

The Comprehensive Verifier (COVER) [16] is split into three
subsystems: the integrity checker, the rule checker, and the rule -
chain checker. The author notes that the basic semantic checks
performed by the integrity checker, such as validating references
and value assignments, are most effective in detecting errors. In
SE, integrity checking is implemented as a fundamental part of the
interactive authoring environment. Whenever changes are saved in
a KB, all definitions, references, and value assignments are auto-
matically checked. Similar to KB-Reducer, COVER’s rule -chain
checker generates all possible environments when performing
redundancy and ambivalence verification. Like KB-Reducer, this
analysis has worse case exponential complexity. The verification
running time for a 540 rule KB on a Sun Sparc2 workstation was
3.5 hours. A later approach that preprocesses the KB reduced the
running time to 10 minutes [25]. Again, by using a simplified
process model, SE can verify KB’s approximately two orders of
magnitude quicker.

As mentioned in the Background and Discussion sections, XCON
[1] was a mission-critical, OPS5 rule system used to configure DEC
hardware and software. By 1988, the 59 XCON engineers and
developers had put in place a new software engineering
methodology, called RIME, to manage and maintain the system’s
large, complex, and constantly changing KB. We already discussed
how, like in SE, new programming constructs were introduced to
give developers more control over the evaluation order of rules.
RIME also prescribes guidelines for rule creation that co-locates
rules similar along one or more dimensions, such as data
dependencies, actions triggered, etc. In addition, KB management
is aided by a rule classification schema that allows for indexed
searches of the rule-base.

Both OWL-DL [19] and SE provide a language for constructing
semantic networks, and both provide algorithms for reasoning over
those networks. In an important respect, however, OWL-DL is less
powerful than SE. OWL-DL, like all standard description logics,
permits only reasoning over inst (membership) and isa (subclass)
links, while SE permits reasoning over any type of link as discussed
in Section 3.1. OWL-DL provides properties that can define more
general relationships, but reasoning is limited to membership and
subclass calculations.

SE also permits a particular type of reasoning not expressible in
OWL-DL: that of composition. In SE, one can represent the
sentence, (forall x) (P(x,y) & Q(y,z) à R(x,z)). In OWL-DL,
however, composition was deliberately omitted because it can make
a language intractable [2]. SE avoids that problem by using
reasoning threads. In every SE application that we have examined,
we have performed reasoning equivalent to the following:

1. Premise: Triggers(Situation, Need)

2. Premise: ServedBy(Need, Product)

3. Rule: Triggers(Situation, Need) & ServedBy(Need,
Product) à Recommendation(Situation, Product)

4. Inference: Recommendation(Situation, Product)

Composition is required to express the rule in step 3, and this is not
supported by OWL-DL.

In another important respect, however, OWL-DL is more powerful
than SE. Like most standard description logics, reasoning in OWL-
DL includes efficient algorithms for subsumption (determining
whether one class is a subset of another) and classification
(determining where in a taxonomy a class belongs). There are no
such tools for SE, so authors must manually create taxonomies and
determine where classes belong in them.

We are exploring ways to combine the flexible, expressive reason-
ing of SE with the subsumption and classification algorithms of
OWL-DL. Our approach is to define SE node types, functions,
formulas, types, and regexes as OWL-DL classes. SE nodes would
be instances of node type classes and SE links would be properties
that relate those instances. We would use the SE reasoner to
traverse the OWL KB much as we do now, but we would also be
able to use OWL-DL’s rich classification scheme.

9. CONCLUSION
We have described how enhanced semantic networks maintain the
comprehensibility of a graphical knowledge representation while
providing a flexible, unambiguous way to reason over that knowl-
edge. Though not as powerful as generic rule systems, initial
applications indicate that SE is sufficiently powerful to build
conversational expert systems where interactivity and fast response
times are paramount.

KB verification and validation are software engineering challenges
that impact the manageability, reliability and, ultimately, the
practicality of KBS’s. We have developed static and dynamic
analyses based on reasoning threads. Our approach is feasible and
has good performance characteristics because of the simplified
reasoning model that ESN’s support. Our static analysis uses
threads to verify and validate KB structure. Our dynamic analysis
uses threads to guide the knowledge authoring process. Both
analyses provide ways to characterize the effects of KB changes to
knowledge engineers, which makes KB evolution easier and safer
to perform.

10. ACKNOWLEDGMENTS
We thank previous and current contributors to the Semantic Engine
project including, Karen Appleby, Leiguang Gong, and Moninder
Singh.

11. REFERENCES
[1] Barker, V. and O’Connor, D. Expert System for Configuration

at Digital: XCON and Beyond. Communications of the ACM,
32(3), March 1989.

[2] Borgida, A. On the relative expressiveness of description
logics and predicate logics. Artificial Intelligence, 82 (1-2), pp
353-367, 1996.

[3] Brachman, R. and Levesque, H. The tractability of
subsumption in frame-based description languages. Proc. Of
the 4th Nat. Conf. on Artificial Intelligence (AAAI’84), 1984.

[4] Chang, C., Combs, J. and Stachowitz, R. A Report on the
Expert Systems Validation Associate (EVA). Journal of
Expert Systems with Applications, 1(3), pp 217-230, 1990.

[5] DIMACS, Satisfiability Suggested Format, May 8, 1993.
Center for Discrete Mathematics and Theoretical
Computer Science, Rutgers University, Piscataway, New
Jersey.

[6] Forgy, C. Rete: A Fast Algorithm for the Many Pattern/Many
Object Pattern Matching Problem. Artificial Intelligence, 19,
pp 17-37, 1982.

[7] Ginsberg, A. Knowledge-Base Reduction: A new approach to
checking knowledge bases for inconsistency and redundancy.
Proc. of 7th National Conference on Artificial Intelligence
(AAAI’88), vol. 2, pp 585-589.

[8] Giunchiglia, E. and Sebastiani, R. Applying the Davis-Putnam
procedure to non-clausal formulas. Lecture Notes in
Computer Science, vol. 1792, Springer-Verlag, 2000.

[9] Minsky, M. A Framework for Representing Knowledge. The
Psychology of Human Vision, P. Winston (Ed.), pp. 211-277,
McGraw-Hill, 1975.

[10] Morgenstern, L., Mueller, E., Riecken, D., Singh, M. and Gong,
L. Enhanced Semantic Networks: Hybrid Knowledge
Structures for Reasoning. IBM Research Report, RC23436,
Nov 16, 2004.

[11] Morgenstern, L. and Riecken, D. SNAP: An action-based
ontology for e-commerce reasoning, Proceedings, Formal
Ontologies Meet Industry, Verona, Italy, 2005.

[12] Nardi, D. and Brachman, R. An Introduction to Description
Logics. The Description Logic Handbook , edited by Baader,
F., Calvanese, D., McGuinness, D., Nardi, D. and Patel-
Schneider, P. Cambridge University Press, 2003.

[13] O’Keefe, R. and O’Leary, D. Expert system verification and
validation: a survey and tutorial. Artificial Intelligence Review,
7, pp 3-42, 1993.

[14] Onoma, A., Tsai, W., Poonawala, M. and Suganuma, H.
Regression testing in an industrial environment.
Communications of the ACM, 41(5), May 1998.

[15] Parnas, D. On the Criteria to be Used in Decomposing
Systems into Modules. Communications of the ACM, 15(12),
pp 1053-1058, December 1972.

[16] Preece, A. Validation of Knowledge-Based Systems: The
State-of-the-Art in North America. The Journal for the
Integrated Study of Artificial Intelligence Cognitive
Science and Applied Epistemology, 11(4), 1994.

[17] Preece, A. and Shinghal, R. Foundation and Application of
Knowledge Base Verification. International Journal of
Intelligent Systems, 9(8), pp 683-701, 1994.

[18] SAT4J, http://www.sat4j.org.

[19] Smith, M., Welty, C. and McGuinness, D. OWL Web
Ontology Language Guide. W3C Recommendation, Feb 10,
2004. (http://www.w3.org/TR/2004/REC-owl-guide-
20040210/)

[20] Suwa, M., Scott, A. and Shortliffe, E. An approach to verifying
completeness and consistency in a rule -based expert system.
Technical report CS-TR-82-922, Stanford University, 1982.

[21] Trowbridge, R. and Weingarten, S. Clinical Decision Support
Systems. Making Health Care Safer: A Critical Analysis of
Patient Safety Practices. Agency for Healthcare Research
and Quality, Pub. No. 01-E058, July 2001.

[22] Tsai, W., Vishnuvajjala, R. and Zhang, D. Verification and
Validation of Knowledge-Based Systems. IEEE Transactions
on Knowledge and Data Engineering, 11(1), January 1999.

[23] Weusten, M. Validation: the key concept in maintenance of
Legal KBS. Proc. Of the 4th Internat. Conf. on Artificial
Intelligence and Law (ICAIL’93). Amsterdam, 1993.

[24] Woods, W. What’s in a link: Foundations for semantic
networks. Representation and Understanding: Studies in
Cognitive Science, edited by Bobrow, D. and Collins, A.,
Academic Press, 1975.

[25] Zlatareva, N. An Integrated Approach to Quality Assurance of
Expert System Knowledge Bases. Proc. of 2nd Internat.
Conf. on Information and Knowledge Management.
Washington, D.C., 1993.

