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ABSTRACT 
A fundamental problem limiting the use of knowledge based 
systems is the difficulty of managing and evolving knowledge over 
time.  As the amount of knowledge in a knowledge base (KB) 
increases, the ability to predict how any change will affect system 
behavior decreases.  Moreover, because of the highly 
interconnected nature of knowledge, KB complexity can grow 
exponentially with the number of facts and rules.  We address this 
scalability problem by leveraging enhanced semantic networks 
(ESN’s) and the idea of reasoning threads.  We describe the 
design, implementation, and capabilities of our ESN system, the 
Semantic Engine, and show how to build useful knowledge base 
systems with it.  We also present novel static and dynamic analysis 
techniques that aid in knowledge maintenance.  Our static analysis 
can detect anomalies, such as output states that can never be 
reached, and can be used to compare the before and after effects 
of a KB change.  Our dynamic analysis provides immediate 
feedback to guide knowledge engineers in an interactive authoring 
environment. 

Categories and Subject Descriptors 
D.2.3 [Software Engineering]: Coding Tools and Techniques; 
D.2.4. Software/Program Verification. I.2.4 [Artificial Intelli-
gence]: Knowledge Representation Formalisms and Methods 

Keywords 
Semantic network, knowledge base verification. 

1. INTRODUCTION 
Knowledge based systems (KBS’s) model human knowledge and 
reasoning to address problems that are not easily solved using 
deterministic algorithms.  These systems usually apply some type of 
search strategy to problems that can have zero or more solutions.  
For example, a simplistic implementation of a production rule system 
starts with a set of facts and sequentially determines if those facts 

satisfy the antecedents of each of the system’s rules.  When a rule 
is satisfied, its consequent can add new facts to working memory, 
which spawns a new iteration of the reasoning process.  The order 
in which the rules are visited and the facts are added constitute a 
search strategy; the search space generated by such reasoning can 
quickly become intractable  as a knowledge base grows.  Algorithms 
such as RETE [6] and its successors have been developed to make 
such processing more efficient.   

The important point, however, is that this computational complexity 
not only makes KBS reasoning difficult for computers to execute, 
but it also makes it difficult for humans to understand.  Indeed, a 
crucial question in knowledge base (KB) management is, “How will 
a particular change to a KB affect system behavior?”  The answer 
to this question depends on understanding how reasoning interacts 
with knowledge and on the availability of tools that help developers 
analyze that interaction. 

KBS’s typically use some variant of first-order logic to reason about 
their knowledge.  The knowledge itself can have many possible 
representations, including rule bases, semantic networks, frames [9], 
and description logics [12]. As the representation becomes more 
expressive, reasoning becomes computationally more complex, and 
system behavior becomes harder for developers to predict [3]. 

We argue that a KBS can execute in a simplified, understandable 
way and still do useful work.  This paper introduces the Semantic 
Engine (SE), a knowledge base system that uses enhanced 
semantic networks (ESN’s) and a simplified approach to reasoning.  
This simplified approach allows us to define reasoning threads, 
which are the valid paths through the ESN that our reasoner 
explores.  By encapsulating knowledge in a localized representation, 
reasoning threads allow our system to execute quickly and allow us 
to perform analyses that facilitate knowledge creation and evolution.  
We present a novel static analysis framework that detects 
anomalies, interesting characteristics, and the effects of KB 
changes.  We use dynamic analysis to guide knowledge engineers 
as they create and modify KB content.  Developers use these 
analysis tools to understand and verify the behavior of KBS’s.   

This paper makes the following contributions: 

• We show how ESN’s simplify KB reasoning. 

• We present novel static analysis techniques for 
verification of ESN systems. 

 

 
 



• We present new dynamic analysis techniques that 
interactively guide ESN evolution. 

• We describe how to build useful expert systems with the 
Semantic Engine. 

The larger view is that KBS's face the same life-cycle challenges 
as conventional software systems, as well as a few additional 
challenges.  Thus, one goal of this paper is to draw attention in the 
software engineering community to the unique issues and 
opportunities presented by KBS's. 

Section 2 provides background on KBS software engineering issues.  
Section 3 discusses SE’s main concepts and provides background 
for the static and dynamic analyses sections, Sections 4 and 5, 
respectively.  Section 6 describes SE applications.  Section 7 
discusses SE’s strengths, weaknesses, and future work.  We 
conclude with related work and final remarks.  

2. BACKGROUND 
The key architectural components of a KBS are (1) a knowledge 
base that contains a collection of related facts and rules, (2) a 
reasoning engine (or reasoner) that uses the knowledge base to 
draw conclusions and prove new facts, and (3) an application 
program that invokes the reasoning engine for specific inquiries.  
This tripartite architecture separates various concerns, which should 
simplify system maintenance, comprehensibility, and evolution [15].  
The modularity of the KBS architecture mirrors that of database 
systems.  Specifically, the KB’s role  is to store knowledge; the 
reasoner’s role is to execute logic over that stored knowledge; and 
the application's role is to query the knowledge.   

The analogy to database systems, however, breaks down when we 
recognize that KBs do not contain passive facts so much as the 
rules by which new facts can be derived, and that reasoners are not 
so much retrieval engines as they are logic-based search engines.  
Reasoners implement some form of mathematical logic in order to 
prove or disprove conjectures in the knowledge domain.  As the 
number of rules in a KB increases, the interconnections between 
those rules—between the consequents and antecedents of different 
rules—can grow exponentially and can lead to search spaces too 
large for reasoners to exhaustively inspect. 

From a software engineering point of view, KBS development 
presents all the life-cycle challenges of conventional software plus 
unique challenges associated with KBs and reasoners.  In particular, 
extra consideration must be given to knowledge acquisition, 
encoding, verification, and validation.  In addition, the ability for 
humans to understand and predict system behavior is important for 
knowledge evolution.  The remainder of this section discusses how 
each of these considerations impacts the development of correct 
and reliable KBS’s. 

To populate a KB, knowledge is acquired from domain experts and 
then encoded into the KB’s knowledge representation.  The pitfalls 
in acquiring domain knowledge from experts are well-documented 
and include restrictions on the availability of experts, the difficulty 
experts can have in explaining their knowledge, and the fact that 
experts often disagree with each other [22].  Knowledge encoding 
is also error prone; checking it can require time-consuming 
coordination between domain experts and knowledge engineers.    

Before a KBS is deployed, it is verified to determine if it executes 
as specified and it is validated to determine if it meets user require-
ments.  Verification can be thought of as a prerequisite of validation, 
since a system that does not conform to specification is unlikely to 
meet user requirements.  For correct and efficient reasoning, a KB 
needs to be consistent, complete, and devoid of circularities and 
redundancies.  These terms have different meanings for different 
knowledge representations, but, in general, a KB can be statically 
analyzed to verify its structure and detect anomalies.  Anomalies 
do not necessarily indicate KB errors, but instead report to the 
knowledge engineer content that might warrant closer examination.    

Anomaly detection is either domain dependent or independent.  
Domain dependent approaches use metadata to constrain KB con-
tent.  Since this metadata also needs to be verified and maintained, it 
can complicate the original problem of KB verification [13].  
Domain independent verification first translates a KB into a 
representation suited to analysis, such as a graph, and then tests for 
various properties.  These properties can be as simple as detecting 
rules that can never fire in a rule-base or detecting disconnected 
regions in a semantic network.  Anomalies have been classified in 
several studies [4][13][16]; here is a summary of the 
Preece/Shinghal formal classification scheme [17]:         

Redundancy – when rules are extraneous, subsumed, or unusable 

Ambivalence – when valid input leads to contradictory results 

Circularity – when reasoning from a rule leads back to that rule  

Deficiency – when valid input is not used or leads to no output 

Whether the above conditions represent actual KB flaws often 
depends on the reasoning procedure used.  For example, the SE 
reasoner handles cases of circularity without generating a runtime 
error.  Thus, the detection of circularity during analysis would only 
be informational in SE. 

KB validation is concerned with the reliable generation of 
appropriate output for every possible input.  A fundamental issue is 
that directly testing every set of input values is impractical in all but 
the simplest systems.  Another problem is that KBS’s are used in 
domains where there can be more than one acceptable result and 
part of the problem is choosing among possible results.  For 
instance, an expert system might be considered reliable if it always 
agrees with experts in simple cases and if it agrees with at least 
some experts in complex cases.  A common theme in KB validation 
is finding small yet representative sets of test cases that allow one 
to confidently predict system behavior [13]. 

KBS’s typically address problems that involve competing goals, 
understanding context, or using common sense—in a word, 
problems that demand judgment.  For example, KB technology is 
used to diagnose medical conditions [21], render legal advice [23], 
and configure complicated systems [1].  In general, KB’s need to 
change as quickly the domains they model.  But when a KB is 
modified, how can one guarantee that the KB is still consistent, that 
the quality of its output hasn’t deteriorated, or that the system will 
behave as intended?  Consider the problem of validating changes to 
the XCON system, which by 1988 contained over 10,000 rules for 
configuring DEC computers.  Then consider that approximately 
40% of the rules were changed, added, or deleted each year [1].  



The ability to safely evolve a KB is crucial in justifying a KBS 
investment.      

Our main motivation is to increase the use of KBS’s by simplifying 
KB management.  In particular, we want to build expert systems 
using a knowledge representation that is comprehensible to non-
specialists.  Our approach uses semantic networks that can be 
graphically displayed and that behave operationally like decision 
trees or even linear reasoning threads.  This simple operational 
model is more accessible  to non-technical domain experts [23] and 
can improve knowledge acquisition and encoding.  Our simplified 
approach should also make verification and validation easier, as well 
as benefit explanation generation and other natural language 
processing that expert systems often perform. 

3. THE SEMANTIC ENGINE (SE) 
3.1 Enhanced Semantic Networks 
A semantic network (SN) is a directed graph that consists of nodes 
that represent concepts and edges that represent relations between 
concepts.  SN’s are appealing because their graphical structure can 
help us visualize reasoning.  Intuitively, paths in an SN should 
correspond to reasoning chains.  Upon closer examination, however, 
arbitrary paths in a SN do not generally correspond to valid 
reasoning [24].    

 

Figure 1: Only some SN paths  correspond to valid reasoning 

Consider Figure 1, which depicts a SN that represents knowledge 
about the animal kingdom and Bill’s visit to the Bronx Zoo.  We can 
assign meaning to many paths.  For example , the path from Penny to 
mammal intuitively means that “Penny is a mammal.”  Many paths, 
however, do not have an obvious meaning:  What can we conclude 
about the path from Bill to plant?  That Bill is a plant?  That Bill 
eats some plants, all plants, or only plants?  In other cases, it’s not 
clear how we draw a correct conclusion:  When traversing the path 
from Bill to New York, how can we conclude that Bill is located in 
New York?  In general, arbitrary SN’s have no clear semantics and 
no clear specification of valid reasoning. 

One way to force all paths in a SN to be meaningful is to limit the 
expressivity of the network.  For example, inheritance networks 
build meaningful taxonomies by limiting their relations to subtype 
(isa) and membership (inst).  This approach is restrictive, however, 

since one can only reason about whether something is a member of 
a class or whether one class is a subset of another.   

In SE, we propose a solution that lies between loosely defined 
reasoning and limited, single-mode reasoning.  The key idea is to 
recognize that there are specific patterns in a SN that correspond to 
valid reasoning.  We identify valid reasoning paths in a SN by 
determining whether a path fits any of a predetermined set of 
reasoning patterns.  We define valid reasoning in a SN by means of 
these fixed patterns, which we encode as regular expressions.  The 
resulting enhanced semantic network  (ESN) extends the 
expressiveness of inheritance networks while maintaining a precise 
definition of valid reasoning. 

An ESN is a semantic network in which each node is specified with 
a node type and each link (edge) with a link type.  Node types and 
link types define two disjoint, finite sets in an ESN.  Each ESN is 
also associated with a list of valid reasoning patterns, which are 
specified as regular expressions (regexes) composed using node 
types and link types.           

 

Figure 2: Small business banking ESN 

Figure 2 shows an ESN fragment that models banking services for 
small businesses.  Each node is labeled with its type and its name; 
each link is labeled with its type.  The regex below, which we will 
call the Recommend regex, defines reasoning paths that begin at 
Situation nodes and end at Product nodes. 

Situation ((LeadsTo Situation) | (Includes Situation))* 
Triggers Need (Includes Need)* ServedBy Product 

In general, a regex starts with one or more node types and is fol-
lowed by zero or more link/node type sequences.  Any number of 
regexes can be defined on an ESN.  For example, the regex, 
Product -ServedBy Need, can be used to discover the immediate 
Needs served by a Product (the minus sign specifies backwards 
traversal on ServedBy  links).   

To further restrict traversal, ESN’s also support formulas on nodes 
and links.  For instance, the Recommend regex above generates 
nine paths, one that connects each Situation to each Product.  If the 
following formula appears on the “Employee medical insurance 
plan” node, then traversal would only proceed to that node for 
businesses with more than five employees.     

NumberOfEmployees(Customer) > 5 



ESN formulas are formulas in the first-order logic sense:  Boolean 
expressions that contain arithmetic, relational, and logical operators.  
The supported data types are string, number, Boolean, and user-
defined enumerations.  The value of an enumerated type can be 
existentially or universally quantified in a formula.  Formulas can 
also reference strongly typed, user-defined functions.  These 
functions take zero or more parameters and return a supported type.  
Functions that return Boolean can be thought of as predicates in 
first order logic.  In the formula above, the function 
NumberOfEmployees takes a parameter of type Person (assume 
Customer is an enumerated value of Person) and returns a number. 

3.2 SE Process Model 
In this section, we discuss how SE reasons with ESN’s.  A formal 
treatment of ESN reasoning demonstrates that SE reasoning is 
equivalent to a subset of first-order logic [10]. 

On input, the SE reasoner takes an ESN, a regex, an optional start 
node list, and an optional profile.  The profile defines a set of read-
only facts that are used to evaluate node and link formulas.  These 
facts are specified as assignments to grounded functions (i.e., 
functions with no variables).  For example, the following fact would 
cause the formula presented in the last section to evaluate to true:  
NumberOfEmployees(Customer)=20. 

Start nodes are nodes where the reasoner begins regex matching.  
If start nodes are provided as input, they are the only nodes used to 
begin matching.  Otherwise, the reasoner calculates the set of start 
nodes before proceeding.  Start nodes are calculated using a 
specially designated formula, the start condition formula (or 
sformula), which can be defined on nodes.  When generating the 
start node set, the reasoner uses profile facts to evaluate all 
sformulas in the ESN.  The nodes whose sformulas evaluate to true 
are added to the start node set. 

During reasoning, the SE reasoner searches for all valid paths in 
the ESN.  Valid paths are those that match a regex.  Regex match-
ing corresponds to constructing a string from a path’s node and link 
types and determining if the regex accepts that string.  Paths begin 
at start nodes; each time a regex match occurs, the reasoner checks 
for an optional precondition formula (pformula) before advancing.  
These formulas, introduced in the last section, must evaluate to true 
for traversal to continue along a path.  Reasoning ends when 
traversal has been attempted on all valid paths.            

On output, the SE reasoner reports results in a reasoning graph.  
Included in the reasoning graph are the output nodes, which 
represent accepting states in the regex; the reasoning threads, 
which are valid paths whose formulas all evaluate to true; and a list 
of unknown atoms , which are grounded functions1 whose values 
are not known.  During traversal, if the reasoner encounters a 
function whose value is unknown, the reasoner adds the function to 
the unknown atoms list and aborts the reasoning path.  

SE reasoning reduces computational complexity and increases over-
all comprehensibility in several ways.  First, by specifying valid 
reasoning, regexes eliminate most network paths from considera-

                                                             
1 To ground a formula, existentially quantified variables are replaced with a 

disjunction of enumerated values and universally quantified variables 
are replaced with a conjunction of enumerated values.        

tion.  Also, SE profiles act as read-only working memory during 
reasoning, so the order in which paths are processed does not affect 
the final reasoning result.  Moreover, reasoning thread traversal is 
idempotent and independent of other traversals. 

An ESN corresponds to a set of well-formed formulas in first-order 
logic and SE reasoning corresponds to simple theorem proving over 
those formulas [10].  Indeed, ESN’s provide a remarkably compact 
representation for rules.  One can view any legal path in an ESN as 
being analogous to a rule in a rule-based system, and a small ESN 
can yield a large number of legal paths.  This compact 
representation is one of the reasons KB’s have been relatively small 
in the applications that we have written (see Section 6).  
Compactness is also due in part to a concise and powerful ontology 
that we have developed [11]. 

SE reasoning also provides expert systems with a framework for a 
conversational interaction with users.  The reasoner delivers its 
conclusions or recommendations as output nodes.  The reasoner 
also indicates that reasoning could be extended if more information 
were known by returning unknown atoms.  An application can use 
these unknown atoms to query users for more information and then 
invoke the reasoner with an updated profile.  SE provides a natural 
language processor that generates English questions from unknown 
atoms and generates explanations from reasoning threads.  This 
language support improves user experience with little effort from 
application developers. 

3.3 SE Architecture 
Figure 3 below shows the software stack for SE applications and 
for the SE authoring environment.  The SE Authoring Workbench 
consists of editors, which include graphical and text-based tools, and 
analyzers, which we discuss in detail in the following sections.  The 
authoring modules interact directly with the KB and with the SE 
Runtime.  

 

 

Figure 3: SE Runtime and Design-Time Architecture  

The main components of the SE Runtime environment are a 
reasoning engine and a natural language processor (NLP).  Both 
components interface with the KB.  We described the reasoner in 
the previous section.  The NLP dynamically generates explanations 
from reasoning threads, questions from unknown atoms, and 
question justifications from unknown atoms and partial paths.  The 
NLP uses various heuristics and tuning parameters to generate 
concise, non-repetitive, natural sounding, English text that can be 
presented to users by an application.  We do not discuss language 
processing in depth in this paper. 

The SE API provides the public interface to the SE Runtime.  
Applications use the SE API to invoke the reasoner and the lan-
guage processor.  The Conversation API supports conversational 



control flow in interactive applications.  The main function of this 
layer is to support one or more concurrent dialogues between an 
expert system and its users.  Each dialogue consists of currently 
known facts, questions posed by the system, and recommendations 
offered by the system on various user-selected topics. 

SE is implemented in Java under Eclipse.  The authoring environ-
ment is integrated into the Eclipse workbench as plug-ins; the SE 
runtime code executes under Eclipse or as standalone Java code.  
All the above components have been implemented, though the 
Conversation API design is still evolving.  In Section 6, we discuss 
our experience building several prototype systems and one 
production system using SE.                  

4. STATIC ANALYSIS 
SE uses both declarative and procedural information to statically 
analyze a KB.  The declarative information consists of KB nodes, 
links, formulas, functions, regexes, and types.  The procedural 
information consists of valid paths calculated by the reasoner.  In 
practice, we can usually enumerate all valid paths during analysis 
because of the filtering efficiency of regexes.  For example, in an 
ESN application that contains over 600 nodes and 900 links, the 
main regex generates only 21 valid paths.  This ability to statically 
inspect all relevant paths means that we can perform analyses that 
would not be practical in other systems. 

4.1 How Static Analysis Works 
The basic idea behind our analysis is to calculate the facts required 
to traverse any node or link in any reasoning thread.  This idea, 
inspired by compiler dataflow analysis, provides the raw data used 
to characterize KB structure and to find KB anomalies.  We begin 
by describing how such data are calculated. 

Let P be a valid path induced by a regex in some KB and let A be a 
node or link in P.  We define a model, M(A), to be a set of facts 
that satisfies the precondition formula at A, the precondition formu-
las for all nodes and links that precede A in P, and the start condition 
of P's start node.  A fact is a ground atom of the form, 
<functionSymbol>(groundedArgs)=<constant>, such as 
Age(Man)=33, IsMarried(Man)=True, or Spouse(Man)='Mary'.  
When the reasoner traverses a path, empty precondition formulas 
are implicitly satisfied; otherwise, the reasoner uses facts to 
determine if it can proceed.  This traversal can be thought of as 
computing a model at each point in the path.  

We statically calculate models by beginning at a start node and as-
suming whatever facts are necessary for traversal to continue on 
the path.  We convert our calculation into a formula satisfiability 
(SAT) problem by encoding SE formulas as formulas of Boolean 
variables in propositional calculus.  Since A can have zero or more 
models, we can only say what possible sets of facts could be in 
effect at runtime.  If A has no models, then we know the reasoner 
cannot traverse that point in the path.     

Given (i) a KB, (ii) one or more regexes, (iii) an optional input node 
set, and (iv) an optional initial fact set, our goal is to statically 
calculate all models at all points in the valid paths.  Our algorithm 
performs the following steps: 

1. Generate all valid paths that conform to the regexes. 

2. Prepare formulas for CNF conversion. 

3. Generate constraints and complete CNF conversion. 

4. Encode CNF formulas into DIMACS format. 

5. Use a SAT solver to find all models.  

Step 1 generates valid paths by running the reasoner while ignoring 
all formulas.  If multiple regexes are specified, we invoke the 
reasoner with each regex and accumulate the resulting paths.  For 
this discussion, we assume the common case of a single regex. 

Step 2 prepares formulas for conversion to conjunctive normal form 
(CNF: conjunction of disjunctions) and, ultimately, to the standard 
DIMACS [5] format for SAT solver input.  For each formula on a 
path, we perform algebraic and syntactic simplification; we ground 
quantified formulas; we substitute values from initial facts where 
possible; and we replace cardinality, implication, and equivalence 
expressions with conjunctive and disjunctive expressions.  Formulas 
can only be quantified over enumerated types, so we have the 
closed world assumption that always permits grounding.  Cardinality 
expressions, which have the form min {f1, f2,…, fn} max, specify a 
minimum and maximum number of Boolean formulas, fi, 0 < i = n, 
that must evaluate to true.  Cardinality expressions are converted to 
a disjunction of conjunctions. 

Step 3 preserves semantics when converting ESN formulas into 
propositional formulas.  Conversions involving (1) equality expres-
sions with literals, (2) range expressions with literals, and (3) 
multiple atom expressions require special consideration.    

Consider the equality expression f(args)=L1, where f(args) is a 
ground atom and L1 is a literal value.  We can represent f(args)=L1 

with the propositional variable v1 and represent the negated expres-
sion, f(args)?L1, with -v1.  Similarly, variable v2 can represent 
f(args)=L2, L1?L2.  If both equality expressions appear in formulas, 
then we insert the clause (-v1 | -v2) wherever v1 appears to 
indicate that v1 implies -v2.  We do a similar insertion wherever v2 
appears.  These insertions preserve the original ESN semantics 
where f(args) can equal exactly one value L1, L2, …, Ln, where 
Li?Lj if i ? j.  We generalize this constraint insertion algorithm to 
handle both equalities and inequalities.  

We also introduce numeric ranges to encode relational expressions 
like f(args)>5 .  This encoding replaces a literal numeric value in a 
relational expression with a range name  in an equality expression.  
For instance, f(args)>5  would be transformed into f(args)=#gt5.  
Next, we enhance the above constraint insertion algorithm to recog-
nize range names and to generate appropriate constraints for incom-
patible assignments.  Consider the following two relational 
expressions with their range name substitutions and SAT variable 
assignments:  

f(args)>5  è f(args)=#gt5 è v1  

f(args)<0  è f(args)=#lt0 è v2  

Since the values in ranges #gt5 and #lt0 are mutually exclusive, we 
insert the constraint (-v1 | -v2) as previously described.  

Certain expressions, however, cannot easily be assigned 
propositional variables.  For example, non-linear algebraic 
expressions, such as f(args)^3=5, are not handled by our current 
algebraic simplifier.  A more fundamental problem occurs when we 
try to assign variables to expressions containing multiple atoms, such 
as Age(Husband)<Age(Wife).  If we assign this condition to vari-
able v1, when v1 is assigned a truth value in a model, we still would 



not know specific literal values for Age(Husband) and Age(Wife) 
that would satisfy the model.  Since these atoms can be interrelated 
in many expressions, determining their values might require solving a 
difficult constraint satisfaction problem.  The same problem occurs 
when the value of a nested atom is unknown, such as 
ModelOf(Car) in IsFast(ModelOf(Car)).  

To address these problems, we detect complex algebraic and multi-
ple atom expressions and then ask the user to provide specific 
additional facts.  When these facts are provided, they are used to 
simplify expressions.  Otherwise, the analysis excludes threads that 
contain the complex expressions.  To date, and without deliberate 
planning, ESN applications contain few or no complex expressions, 
which might indicate that these expressions are atypical in such 
applications.   

Once complex expressions have been processed and constraints 
have been inserted, we convert ESN formulas to CNF.  To avoid an 
exponential increase in the size of formulas, we use the conversion 
algorithm specified by Giunchiglia and Sebastiani [8].           

Steps 4 and 5 involve the straightforward translation of CNF formu-
las to DIMACS format and the invocation of a SAT solver.  An 
analysis run can invoke the SAT solver once for each formula on 
each valid path.  Whenever possible, we cache intermediate results 
to speed up processing.  For example, since formulas are cumulative 
in a thread, we append the current formula encoding to the previous 
DIMACS encoding as we progress through a thread.  We also 
cache formula conversion data between analyzer runs.   

In current applications, SE achieves sub-second analysis execution 
times on an IBM T40 laptop using the Java-based SAT4J solver 
[18].  These executions often include 70 or more invocations of the 
solver.  The number of solver invocations is at most the number of 
formulas on all valid paths, which is roughly proportional to the size 
of the KB.  

4.2 How Static Analysis is Used 
SE static analysis calculates all possible models at each node and 
link in a valid path.  These models are minimal in that only atoms 
that appear at or before a location in a path are assigned truth 
values at that location.  If the last node in a path has at least one 
model, then the path is a reasoning thread.  Each model at a 
thread’s terminal node defines a set of facts that allows that thread 
to be traversed.  Paths that cannot reach their terminal nodes are 
reported as dead ends, a type of ambivalence anomaly that might 
indicate a KB error.  In fact, we have detected and removed such 
paths from our KB’s using this analysis.    

The SE analyzer optionally generates coverage tests by writing new 
profiles to disk.  Each profile contains a set of facts that allows at 
least one thread identified during analysis to be traversed by the 
reasoner.  Taken as a group, the profiles exercise all threads.  The 
current generator uses a greedy algorithm to create the minimal 
number of profiles for a given set of threads, but other algorithms 
are possible.  SE also detects disconnected regions in KB’s using a 
static analysis that does not rely on threads.  

Our ongoing work focuses on different ways to characterize a KB.  
Steady state  analysis allows a knowledge engineer to probe a KB 
and understand its structure.  Change impact analysis compares 
the characteristics of a KB before and after changes are made.  

We can think of these analyses in terms of the questions that they 
answer about a KB.  These questions can be categorized into three 
levels.  At the regex level, we ask questions about the reasoning 
threads induced by one or more regexes.  At the thread level, we 
ask questions about node and link traversal.  At the fact level, we 
ask questions about the facts asserted at various points during 
reasoning.      

4.2.1 Steady State Analysis 
Steady state analysis involves a single execution of the analyzer.  
The reasoning graph returned by the analyzer contains the raw data 
needed to answer the following questions.     

Regex level questions:  What nodes are not included in any thread?  
Do two or more regexes share any nodes?  Are the threads induced 
by a regex confined to a specific region of the KB?  The answers to 
these questions allow us to split a KB along regex lines or to 
eliminate unused nodes and links.     

Thread level questions:  How many ways are there to reach a node, 
especially an output node, for a given set of regexes?  How many 
threads start at a particular node?  Is there a thread that connects 
start node S to some other node N?  What nodes dominate other 
nodes, where node D dominates node N iff D is traversed before N 
on every thread in which N appears?  The answers to these 
questions can help us predict reasoner behavior and validate the KB 
domain model.          

Fact level questions:  What facts are asserted at a node across all 
threads that traverse the node?   What output nodes are reached 
when fact F is asserted?  Or when not F is asserted?  Given fact F, 
is there a fact F' such that F' is always asserted when F is 
asserted?  The answers to these questions use the analyzer-
generated models to explain how facts guide reasoning. 

4.2.2 Change Impact Analysis 
Change impact analysis involves two executions of the analyzer, one 
that occurs before KB changes are made and one that occurs after.  
The basic idea is to compare the results of the two executions to 
understand the affect KB changes have on system behavior.  By 
comparing the answers to the above questions both before and after 
changes are made, we should be able to identify unintended conse-
quences caused by the changes.  For example, we can determine if 
the number of threads has changed; if the number of threads 
passing through a particular node has changed; if the facts asserted 
at a node have changed; or if the nodes and links in a thread have 
changed.  If any of these changes are unexpected, the knowledge 
engineer can investigate further.    

4.2.3 Static Analysis Framework  
The SE analyzer provides a wealth of information that knowledge 
engineers can use to predict KBS behavior.  The distinguishing 
feature of our analysis is its ability to abstractly evaluate all reason-
ing threads.  The challenge is to allow engineers to quickly access 
the most useful data generated by that evaluation.  For example, if 
an engineer wants to verify that all nodes of a certain type are 
output nodes, the output node list in the reasoning graph result can 
be consulted.  It would be more convenient, however, if this type of 
deficiency anomaly were automatically checked and presented to 
the engineer.  Similarly, multiple threads that have the same start 



and output nodes should be flagged as redundancy anomalies 
without requiring a visual inspection of all threads.   

Currently, SE provides the framework and raw analysis data by 
which many aspects of a KBS can be verified and validated.  Our 
continuing work includes determining what information is most use-
ful and how to present it most effectively.  Once the models have 
been generated on each valid path, the computations described in 
Sections 4.2.1 and 4.2.2 are, with one exception, linear with regard 
to the number of nodes, threads, facts, or models.  Finding the facts 
that are always asserted when fact F is asserted has complexity 
O(n2), where n is the number of facts.            

5. DYNAMIC ANALYSIS 
In SE, dynamic analysis involves the use of the reasoner during 
KB authoring.  In this section, we discuss two ways that reasoning 
is integrated with authoring: 

• Regression testing:  We incorporate KB regression testing 
in the SE authoring workbench (AWB) to provide the 
knowledge engineer with immediate feedback after 
changing a KB. 

• Reasoning driven authoring:  The reasoning algorithm is 
used to suggest possible extensions for selected reasoning 
threads. 

5.1 Regression Testing 
The need for regression testing in software development is well 
recognized [14]. The purpose of regression testing is to ensure that 
existing functionality is not adversely affected when software is 
modified.  In KBS’s, the management a KB becomes more 
complex as the KB grows.  Consider a product recommendation 
system in which the number of possible product recommendations 
increases over time.  At some point, a knowledge engineer cannot 
keep all recommendations for all products in his head.  In such 
situations, how can a knowledge engineer know if a KB change is 
safe to make?  

To address this problem, we allow knowledge engineers to under-
stand the effect a change in terms of its impact on reasoning results 
for particular inputs.  We use the term exemplars to refer to sets of 
facts that represent scenarios that a KB is expected to handle.  In 
applications that recommend products, for example, an exemplar 
would typically represent a class of customers.  Each exemplar is 
associated with a list of invariants:  nodes that either must or must 
not be activated when the reasoner runs with the exemplar’s input.  
For example, in an SE banking application, we might want to ensure 
that existing homeowners are never offered a mortgage that is 
intended only for first-time homeowners.  The exemplar for existing 
homeowners would specify that nodes related to first-time 
homeowners should not be activated. 

Whenever the KB is modified using the AWB, the reasoner 
automatically runs all exemplars in the background.  The difference 
between the reasoning output and the expected output is displayed 
along with any information about violations of invariants.  By 
calculating reasoning threads, the dynamic analysis subsystem 
shows what nodes were newly activated as a result of a change and 
why those nodes were activated.  This is similar to the static change 
impact analysis discussed in Section 4.2.2, except here we 
automatically check for expected results during KB authoring. 

5.2 Reasoning Driven Authoring 
The AWB also uses reasoning threads to suggest how to extend an 
ESN.  This procedure, called reasoning driven authoring, is 
summarized as follows: 

• The author selects a node in a reasoning thread. 

• Using the node’s prefix , defined as the sequence of node 
and link types up to and including the selected node, the 
AWB computes the link and node type combinations that 
could legally follow the selected node. 

• The author selects the desired extension. 

One can think of reasoning driven authoring as a kind of type-ahead 
for ESN editing.  To illustrate how this works, consider the 
reasoning thread shown in Figure 2 in Section 3.1 that starts with 
Situation/Plans to hire employees and ends with 
Product/employee medical insurance plan.  This thread conforms 
to the Recommend regex, which we reproduce below: 

Situation ((LeadsTo Situation) | (Includes Situation))* 
Triggers Need (Includes Need)* ServedBy Product 

If a knowledge engineer wants to extend the KB at the 
Situation/Has employees node, then the AWB would compute the 
prefix: (Situation/Plans to hire employees) (LeadsTo) 
(Situation/Has employees).  The following link type/node type 
pairs could be added after this prefix to conform with the regex: 

 LeadsTo è Situation 

 Includes è Situation 

 Triggers è Need 

If an exemplar is used in combination with reasoning driven 
authoring, then the author is assured that a newly added node will be 
activated for at least for one set of inputs.   

6. APPLICATIONS 
Using SE, we have implemented several conversational expert 
systems, which we define as expert systems that refine their results 
by interacting with users.  SE’s conversational support is based on 
the reasoner’s ability to report the unknown atoms that it encounters 
during KB traversal.  An unknown atom indicates that a valid path 
could be traversed further if one or more facts were known.  As 
mentioned in Section 3.3, the SE natural language processor can 
generate questions from unknown atoms as well as explanations of 
why a question is being asked.  Applications can use these facilities 
to elicit more information from users.  When provided with these 
additional facts, the reasoner can explore more of the network.      

Fundamentally, our conversational support depends on valid reason-
ing paths.  These valid paths allow knowledge engineers to work at 
the level of domain concepts and relations rather than at the level of 
first-order logic.  This high level approach facilitates communication 
with users because it matches the level of abstraction that users 
understand. 

The most significant SE application to date has been an IBM sales 
recommendation system.  This pilot sales application was restricted 
to one geographic area and one aspect of IBM’s service portfolio.  
A group of roughly a dozen telemarketing representatives used the 
SE system during sales calls while another group of the same size 



served as a control group.  Sales measurements taken over a three 
month period indicated that the test group outperformed the control 
group by over 400%.  In addition, the test group increased their 
sales by over 400% when compared to the same period in the 
previous year.  Though such a limited study only indicates potential, 
the results were enough to put the system into production and begin 
a larger geographic rollout. 

The sales system is a J2EE web application that calls the SE public 
API.  The application’s KB contains 164 nodes, 330 links, 42 
functions, and 2 regexes.  The main regex generates 61 threads 
with an average of 5.9 nodes and 1.1 formulas per thread.  The 
system performs well and has required little maintenance because 
the domain knowledge is relatively stable .  Other SE applications 
include a system that recommends circuit board configurations for 
an IBM hardware division and a system that recommends small 
business services offered by an international bank.  This latter 
system implements our largest KB with 627 nodes, 937 links, 166 
functions, and 3 regexes.  The main regex generates 21 threads 
with an average of 8.4 nodes and 3.2 formulas per thread.  Both 
systems are prototype web applications.   

Currently, we are building a pilot application for a telecommunica-
tions company to assist with customer cell phone upgrades.  We 
expect this system to provide valuable feedback about the 
effectiveness of our analysis tools now that a significant portion of 
those tools are in place.  In the next section, we discuss what 
applications make good candidates for SE.      

7. DISCUSSION 
A distinguishing feature of KBS’s is their ability to determine control 
flow at runtime.  A standard rule -based system, for example, 
determines the next rule to fire based on the current state of 
working memory and the rules in its KB.  At development time, 
knowledge engineers define if-then rules, but they do not explicitly 
specify the order in which rules will fire.  At runtime, after a rule’s 
antecedent is satisfied by the state of working memory, the reasoner 
determines when the rule actually fires.   

This approach differs significantly from that used in traditional 
software where most, if not all, control flow is explicitly specified at 
development time.  KBS’s often succeed where traditional systems 
have difficulty because KBS’s do not need to prescribe execution 
order in advance.  This feature is especially important for applica-
tions in dynamic domains that have many data interdependencies 
and many special cases.     

One drawback of the KBS approach, however, is that the number 
of possible execution paths can grow exponentially with the number 
of rules.  This growth adds indeterminism to a computation when 
many more paths exist than can feasibly be executed.  Also, the 
additional computational complexity makes analyzing and predicting 
KBS behavior more difficult.      

SE trades away some KBS flexibility by specifying valid reasoning 
patterns in advance.  In exchange, SE gains good performance in a 
simplified runtime environment.  SE static and dynamic analyses 
depend on having a manageable number of execution paths in an 
environment where facts are read-only. These characteristics lay 
the foundation for the verification, validation, and authoring tech-
niques described in this paper. 

SE is hardly unique in devising ways to reduce KBS complexity.  
After seven years of development and use, the XCON rule-based 
system mentioned in Section 2 was rewritten to reduce rule 
complexity and to improve KB manageability [1].  Two key compo-
nents of the new system are algorithmic methods, which allow 
execution sequences to be specified at development time, and 
decision methods, which provide a way to order execution at 
runtime based on current state.  Both methods make control flow 
more deterministic  and, in that sense, SE takes a similar approach.      

SE inhabits the design space between dynamic rule  systems and 
static decision trees by allowing the traversal of multiple reasoning 
threads in a single reasoning session.  Adding or modifying a regex 
creates a new way to reason over the same semantic network.  
Adding, deleting, or modifying nodes and links can also change 
reasoning.  SE is significantly more flexible than decision trees 
because its execution paths are not hardcoded. 

Thus, SE is well-suited for conversational expert systems that make 
recommendations from a finite, well-defined set of choices that is 
known in advance.  In addition, SE is appropriate when reasoning 
patterns are also known in advance.  Within these constraints, SE 
provides a highly interactive user experience. 

On the other hand, SE is not appropriate for systems that optimize 
or prioritize their results since SE has no way to compare recom-
mendations or enforce global constraints.  SE evaluates formulas 
using an initial set of read-only facts; there is no concept of a 
mutable working memory to which facts are added during 
reasoning.  In addition, SE is not appropriate for complex configu-
ration problems like those addressed by XCON because 
enumerating all possible configurations in advance is impractical. 

Currently, we are exploring ways to increase the expressiveness of 
SE without jeopardizing its essential simplicity.  Ideas include adding 
global constraints; adding axioms that a theorem prover could use to 
expand the set of known facts; and providing a way to order and 
group generated questions.  This last point is most important 
because it provides applications with greater conversational control.  
The Conversation API shown in Figure 3 is where we are defining 
this new conversational support.  For the longer term, we are 
considering ways to modularize KB’s, ways to support collaborative 
KB authoring, and the introduction of node and link subtypes. 

8. RELATED WORK 
The Preece/Shinghal anomaly classification scheme [17] discussed 
in Section 2 is tailored to rule-based systems, but the anomalies it 
defines are applicable to SE.  In SE, deficiency anomalies include 
unreferenced functions, unused input facts, and incomplete thread 
coverage of potential output nodes.  Dead ends are ambivalence 
anomalies; threads with the same start and end nodes are 
redundancy anomalies.  Revisiting a node without advancing in a 
regex is a circularity anomaly. 

KBS verification has been extensively studied over the past three 
decades.  As early as 1982, an oncological decision support system, 
ONCOCIN, provided domain independent rule checking as a way to 
find KB anomalies [20].   

In KB-Reducer [7], Ginsberg uses whole-KB analysis to detect all 
potential redundancies and contradictions (ambivalences).  His 
approach improves upon the pair-wise rule analysis used in 



ONCOCIN, which cannot guarantee to find all anomalies.  KB-
Reducer first calculates the dependency relationships between rules 
and then it generates the environments that satisfy each rule.  In the 
worst case, the number of generated environments is exponential in 
the number of findings, which are literals used as input.  Though 
the worst case is unlikely in practice, in KB’s with 50, 150, and 370 
rules, the number of generated environments was 700, 4000, and 
35,000, respectively.  The running time for the largest KB was 10 
cpu hours on a late 1980’s workstation.  The use of reasoning 
threads allows SE to avoid such complex computation. 

The Comprehensive Verifier (COVER) [16] is split into three 
subsystems:  the integrity checker, the rule checker, and the rule -
chain checker.  The author notes that the basic semantic checks 
performed by the integrity checker, such as validating references 
and value assignments, are most effective in detecting errors.  In 
SE, integrity checking is implemented as a fundamental part of the 
interactive authoring environment.  Whenever changes are saved in 
a KB, all definitions, references, and value assignments are auto-
matically checked.  Similar to KB-Reducer, COVER’s rule -chain 
checker generates all possible environments when performing 
redundancy and ambivalence verification.  Like KB-Reducer, this 
analysis has worse case exponential complexity.  The verification 
running time for a 540 rule KB on a Sun Sparc2 workstation was 
3.5 hours.  A later approach that preprocesses the KB reduced the 
running time to 10 minutes [25].  Again, by using a simplified 
process model, SE can verify KB’s approximately two orders of 
magnitude quicker. 

As mentioned in the Background and Discussion sections, XCON 
[1] was a mission-critical, OPS5 rule system used to configure DEC 
hardware and software.  By 1988, the 59 XCON engineers and 
developers had put in place a new software engineering 
methodology, called RIME, to manage and maintain the system’s 
large, complex, and constantly changing KB.  We already discussed 
how, like in SE, new programming constructs were introduced to 
give developers more control over the evaluation order of rules.  
RIME also prescribes guidelines for rule creation that co-locates 
rules similar along one or more dimensions, such as data 
dependencies, actions triggered, etc.  In addition, KB management 
is aided by a rule classification schema that allows for indexed 
searches of the rule-base.       

Both OWL-DL [19] and SE provide a language for constructing 
semantic networks, and both provide algorithms for reasoning over 
those networks.  In an important respect, however, OWL-DL is less 
powerful than SE.  OWL-DL, like all standard description logics, 
permits only reasoning over inst (membership) and isa (subclass) 
links, while SE permits reasoning over any type of link as discussed 
in Section 3.1.  OWL-DL provides properties that can define more 
general relationships, but reasoning is limited to membership and 
subclass calculations. 

SE also permits a particular type of reasoning not expressible in 
OWL-DL:  that of composition.  In SE, one can represent the 
sentence, (forall x) (P(x,y) & Q(y,z) à R(x,z)).  In OWL-DL, 
however, composition was deliberately omitted because it can make 
a language intractable [2].  SE avoids that problem by using 
reasoning threads.  In every SE application that we have examined, 
we have performed reasoning equivalent to the following:  

1. Premise:  Triggers(Situation, Need) 

2. Premise:  ServedBy(Need, Product) 

3. Rule:  Triggers(Situation, Need) & ServedBy(Need, 
Product) à Recommendation(Situation, Product) 

4. Inference:  Recommendation(Situation, Product) 

Composition is required to express the rule in step 3, and this is not 
supported by OWL-DL. 

In another important respect, however, OWL-DL is more powerful 
than SE.  Like most standard description logics, reasoning in OWL-
DL includes efficient algorithms for subsumption (determining 
whether one class is a subset of another) and classification 
(determining where in a taxonomy a class belongs). There are no 
such tools for SE, so authors must manually create taxonomies and 
determine where classes belong in them. 

We are exploring ways to combine the flexible, expressive reason-
ing of SE with the subsumption and classification algorithms of 
OWL-DL.  Our approach is to define SE node types, functions, 
formulas, types, and regexes as OWL-DL classes.  SE nodes would 
be instances of node type classes and SE links would be properties 
that relate those instances.  We would use the SE reasoner to 
traverse the OWL KB much as we do now, but we would also be 
able to use OWL-DL’s rich classification scheme. 

9. CONCLUSION 
We have described how enhanced semantic networks maintain the 
comprehensibility of a graphical knowledge representation while 
providing a flexible, unambiguous way to reason over that knowl-
edge.  Though not as powerful as generic rule systems, initial 
applications indicate that SE is sufficiently powerful to build 
conversational expert systems where interactivity and fast response 
times are paramount.     

KB verification and validation are software engineering challenges 
that impact the manageability, reliability and, ultimately, the 
practicality of KBS’s.  We have developed static and dynamic 
analyses based on reasoning threads.  Our approach is feasible and 
has good performance characteristics because of the simplified 
reasoning model that ESN’s support.  Our static analysis uses 
threads to verify and validate KB structure.  Our dynamic analysis 
uses threads to guide the knowledge authoring process.  Both 
analyses provide ways to characterize the effects of KB changes to 
knowledge engineers, which makes KB evolution easier and safer 
to perform.       
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